This report documents the successful deployment of a quantum memory architecture that combines dynamical decoupling (Hahn Echo) with mid-circuit qubit recyclingThis report documents the successful deployment of a quantum memory architecture that combines dynamical decoupling (Hahn Echo) with mid-circuit qubit recycling

Experiment Log: Validating Echo-Stabilized Recursive Routing on IBM Heron

2025/12/15 13:11

This report documents the successful deployment of a quantum memory architecture that combines dynamical decoupling (Hahn Echo) with mid-circuit qubit recycling. The experiment was executed on the IBM ibm_torino processor. The data confirms that a qubit state can be actively stabilized against dephasing while the surrounding circuit resources are reset and reused in real-time.

The Engineering Constraints

Running complex circuits on current hardware faces two primary failure modes:

  1. Limited Qubit Count: Running out of physical registers for routing.
  2. Decoherence ($T_2$ Decay): Information loss due to magnetic noise during idle periods.

The "Echo-Stabilized Recursive Link" addresses both by running two operations in parallel:

  • Perceptual Grid Engine Architecture: Teleporting data, then immediately resetting the "Sender" qubits to the ground state $|0\rangle$ to free them for new tasks.
  • Active Stabilization: Applying an $X_{\pi}$ pulse sequence to the "Buffer" qubit to refocus the state vector and cancel low-frequency noise during the hold duration.

Implementation

The experiment utilized a 3-qubit register managed by Qiskit 1.3 primitives.

  • Q0 (Source): Encoded with a "Pilot State" ($Ry(\theta)$), aiming for a 75% probability of $|0\rangle$.
  • Q1 (Bridge): Used for entanglement generation.
  • Q2 (Buffer): Used for storage.

The Control Logic:

The following Python function was deployed to the Quantum Processing Unit (QPU). It enforces a conditional reset on Q0/Q1 while simultaneously executing the Hahn Echo on Q2.

def create_stabilized_circuit(delay_us=20): # Setup Registers qr = QuantumRegister(3, 'q') cr_hop1 = ClassicalRegister(2, 'hop1') cr_hop2 = ClassicalRegister(2, 'hop2') cr_final = ClassicalRegister(1, 'result') qc = QuantumCircuit(qr, cr_hop1, cr_hop2, cr_final) # 1. Initialize Pilot State (~75% |0>) qc.ry(2 * np.arccos(np.sqrt(0.75)), 0) qc.barrier() # 2. Outbound Teleportation (Source -> Buffer) qc.h(1) qc.cx(1, 2) qc.cx(0, 1) qc.h(0) qc.measure(0, cr_hop1[0]) qc.measure(1, cr_hop1[1]) # Feed Forward Correction with qc.if_test((cr_hop1[1], 1)): qc.x(2) with qc.if_test((cr_hop1[0], 1)): qc.z(2) qc.barrier() # 3. Parallel Operation (The Innovation) # A. Reset Sender/Bridge for Reuse qc.reset(0) qc.reset(1) # B. Hahn Echo on Buffer if delay_us > 0: half_wait = delay_us / 2 qc.delay(half_wait, 2, unit='us') qc.x(2) # Invert qc.delay(half_wait, 2, unit='us') qc.x(2) # Restore qc.barrier() # 4. Inbound Teleportation (Buffer -> Recycled Source) qc.h(1) qc.cx(1, 0) # Entangle with the freshly reset q0 qc.cx(2, 1) qc.h(2) qc.measure(2, cr_hop2[0]) qc.measure(1, cr_hop2[1]) with qc.if_test((cr_hop2[1], 1)): qc.x(0) with qc.if_test((cr_hop2[0], 1)): qc.z(0) # 5. Verification qc.measure(0, cr_final) return qc

Hardware Results

The circuit was executed on the ibm_torino system (Heron processor) with two distinct configurations to isolate variables.

1. Structural Baseline ($0\mu s$ Delay)

  • Purpose: Verify the logic of the mid-circuit reset and routing without the penalty of time decay.
  • Target: 75.00%
  • Measured: 71.66%
  • Result: Validated. The reset operation successfully cleared the qubits for reuse.

2. Active Stabilization Test ($20\mu s$ Delay)

  • Purpose: Verify that the Hahn Echo sequence preserves the state during a hold period greater than zero.
  • Target: 75.00%
  • Measured: 68.70%
  • Result: Validated. Signal loss was restricted to <3% compared to the baseline.

Conclusion

The data indicates that the "Echo-Stabilized Recursive Link" is a viable architecture for NISQ hardware. The system successfully maintained signal integrity significantly above the random noise floor (50%), proving that dynamic qubit reuse and active error suppression can be executed concurrently.

Methodology Note

This project was executed using a "Centaur" workflow. I, Damian Griggs, acted as the Architect, defining the system constraints, logic, and experimental design. The code generation and syntax validation were handled by an AI agent (Gemini) acting as the functional builder. This separation of concerns allowed for rapid prototyping and deployment to the physical hardware.

\ \ Want to see the full code on GitHub?

https://github.com/damianwgriggs/Perceptual-Grid-Engine-Quantum-Experiment/blob/main/Echo-Stabilized%20Recursive%20Link.ipynb

Piyasa Fırsatı
Echo Logosu
Echo Fiyatı(ECHO)
$0.01434
$0.01434$0.01434
+0.34%
USD
Echo (ECHO) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Liquidations Surge 108% to $665 Million as Bearish Sentiment Dominates

Liquidations Surge 108% to $665 Million as Bearish Sentiment Dominates

The cryptocurrency market experienced a brutal 24-hour period, with liquidations surging 108% to reach $665 million. The spike in forced position closures reflects the violent price action that has characterized recent trading sessions, catching leveraged traders on both sides of the market.
Paylaş
MEXC NEWS2025/12/16 19:30
Tajikistan Imposes Harsh Penalties for Illegal Crypto Mining Linked to Power Theft

Tajikistan Imposes Harsh Penalties for Illegal Crypto Mining Linked to Power Theft

Tajikistan has enacted legislation criminalizing unauthorized cryptocurrency mining operations connected to electricity theft. Violators face fines reaching approximately $8,200 and prison terms of up to 8 years, signaling the government's serious stance against illicit mining activities draining the national power grid.
Paylaş
MEXC NEWS2025/12/16 19:32
Stablecoins Are Booming — And The Fed Thinks They Could Cut Rates

Stablecoins Are Booming — And The Fed Thinks They Could Cut Rates

The post Stablecoins Are Booming — And The Fed Thinks They Could Cut Rates appeared on BitcoinEthereumNews.com. Stablecoins Are Booming — And The Fed Thinks They Could Cut Rates | Bitcoinist.com Sign Up for Our Newsletter! For updates and exclusive offers enter your email. Christian, a journalist and editor with leadership roles in Philippine and Canadian media, is fueled by his love for writing and cryptocurrency. Off-screen, he’s a cook and cinephile who’s constantly intrigued by the size of the universe. This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy Center or Cookie Policy. I Agree Source: https://bitcoinist.com/stablecoins-are-booming-and-the-fed-thinks-they-could-cut-rates/
Paylaş
BitcoinEthereumNews2025/11/11 05:05