The PerSense framework, a model-agnostic, one-shot, training-free method for customized instance segmentation in dense pictures, is described in this portion of the article. A Few-Shot Object Counter (FSOC) is used to generate density maps, an Instance Detection Module (IDM) is used to identify potential prompts, a Point Prompt Selection Module (PPSM) is used for adaptive filtering, and a Vision-Language Model (VLM) is used for semantic class-label extraction.The PerSense framework, a model-agnostic, one-shot, training-free method for customized instance segmentation in dense pictures, is described in this portion of the article. A Few-Shot Object Counter (FSOC) is used to generate density maps, an Instance Detection Module (IDM) is used to identify potential prompts, a Point Prompt Selection Module (PPSM) is used for adaptive filtering, and a Vision-Language Model (VLM) is used for semantic class-label extraction.

PerSense Delivers Expert-Level Instance Recognition Without Any Training

2025/10/29 03:37

Abstract and 1. Introduction

  1. Related Work

  2. Method

    3.1 Class-label Extraction and Exemplar Selection for FSOC

    3.2 Instance Detection Module (IDM) and 3.3 Point Prompt Selection Module (PPSM)

    3.4 Feedback Mechanism

  3. New Dataset (PerSense-D)

  4. Experiments

  5. Conclusion and References

A. Appendix

\

3 Method

We introduce PerSense, a training-free and model-agnostic one-shot framework designed for personalized instance segmentation in dense images (Figure 3). Here, we describe the core components of our PerSense framework, including Class-label extraction using vision-language model (VLM) and exemplar selection for few-shot object counter (FSOC) (sec. 3.1), instance detection module (IDM) (sec. 3.2), point-prompt selection module (PPSM) (sec. 3.3), and the feedback mechanism (sec. 3.4).

3.1 Class-label Extraction and Exemplar Selection for FSOC

PerSense operates as a one-shot framework, wherein a support set is utilized to guide the personalized segmentation of an object in the query image that shares semantic similarity with the support object. Initially, input masking is applied to the support image using the coarse support mask to isolate the object of interest. The resulting input masked image is fed into the VLM with a custom prompt, "Name the object in the image?". The VLM generates a description of the object in the image, from which the noun is extracted, representing the class-label or the object’s name. Subsequently, the grounding detector is prompted with this class-label to facilitate personalized object detection in the query image. To enhance the prompt, we prefixed the term "all" with the class-label.

\ Figure 4: (a) Without the identification of composite contours, multiple instances of the object may be considered as single contour (red circle). Identification of composite contours (green circle) enables to precisely localize child contours, resulting in improved segmentation performance. (b) The plot highlights the existence of composite contours beyond µ + 2σ , of the contour area distribution, for 250 images in PerSense-D. Hence, these contours can be identified and detected as outliers.

\ Next, we begin by computing the similarity score between query and support features coming from the encoder. Utilizing this score along with detections from the grounding object detector, we extract the positive location prior. Specifically, we identify the bounding box with the highest detection confidence and proceed to locate the pixel-precise point with the maximum similarity score within this bounding box. This identified point serves as the positive location prior, which is subsequently fed to the decoder for segmentation. Additionally, we extract the bounding box surrounding the segmentation mask of the object. This process effectively refines the original bounding box provided by the grounding detector. The refined bounding box is then forwarded as an exemplar to the FSOC for generation of Density Map (DM).

3.2 Instance Detection Module (IDM)

The IDM begins by converting the DM from FSOC into a grayscale image, followed by the creation of a binary image using a pixel-level threshold of 30 (range 0 to 255). Morphological erosion operation using a 3 x 3 kernel is then applied to refine the boundaries and eliminate noise from the binary image. We deliberately used a small kernel to avoid damaging the original densities of true positives. Next, contours are identified in the eroded binary image, and for each contour, its area and center pixel coordinates are computed. The algorithm calculates the mean (µ) and standard deviation (σ) of all contour areas to assess the distribution of contour sizes. Subsequently, composite contours, which represent multiple objects in one contour, are detected using a threshold based on the distribution of contour sizes. This is necessary to identify the regions which are detected as one contour but they encapsulate multiple instances of the object of interest (Figure 4a). Such regions are scarce and can be detected as outliers, essentially falling beyond µ + 2σ considering the contour size distribution (Figure 4b). For each detected composite contour, distance transform is applied to expose child contours for ease of detection. Finally, the algorithm returns the center points obtained from all detected contours (parent and child) as candidate point prompts. In summary, through systematic analysis of the DM, IDM identifies regions of interest and generates candidate point prompts, which are subsequently forwarded to PPSM for final selection. See Appendix A.1 for pseudo-code of IDM.

3.3 Point Prompt Selection Module (PPSM)

The PPSM serves as a critical component in the PerSense pipeline, tasked with filtering candidate point prompts for final selection. For each candidate point prompt received from IDM, we compare the corresponding query-support similarity score using an adaptive threshold as:

\

\ where maxscore is the maximum value of query-support similarity score, the objectcount corresponds to the number of instances of the desired object present in the query image and the normconst is a normalization factor to make the threshold adaptive with reference to the object count. We used a normalization factor of √ 2. A fixed similarity threshold would struggle in this case as query-support similarity score varies significantly even with small intra-class variations. Moreover, for highly crowded images (objectcount > 50), the similarity score for positive location priors can vary widely, necessitating an adaptive threshold that accounts for the density (count) of the query image. To address this challenge, our adaptive threshold is based on the maximum query-support similarity score as well as the object count within the query image. In addition to this, PPSM leverages the complementary bounding box information from the grounding detector and ensures that the filtered point prompt lies within the bounding box coordinates. Finally, the selected point prompts are fed to the decoder for segmentation. See Appendix A.1 for pseudo-code of PPSM.

3.4 Feedback Mechanism

PerSense also incorporates a feedback mechanism to enhance the exemplar selection process for FSOC by leveraging the initial segmentation output from the decoder. Based on the mask scores provided by SAM, the top four candidates, from the initial segmentation output, are selected and forwarded as exemplars to FSOC in a feedback manner. This leads to improved accuracy of the DM and consequently enhances the segmentation performance. The quantitative analysis of this aspect is further discussed in sec. 5, which explicitly highlights the value added by the feedback mechanism. See Appendix A.1 for the overall pseudo-code of PerSense.

\

:::info Authors:

(1) Muhammad Ibraheem Siddiqui, Department of Computer Vision, Mohamed bin Zayed University of AI, Abu Dhabi (muhammad.siddiqui@mbzuai.ac.ae);

(2) Muhammad Umer Sheikh, Department of Computer Vision, Mohamed bin Zayed University of AI, Abu Dhabi;

(3) Hassan Abid, Department of Computer Vision, Mohamed bin Zayed University of AI, Abu Dhabi;

(4) Muhammad Haris Khan, Department of Computer Vision, Mohamed bin Zayed University of AI, Abu Dhabi.

:::


:::info This paper is available on arxiv under CC BY-NC-SA 4.0 Deed (Attribution-Noncommercial-Sharelike 4.0 International) license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

Quote 500: Crypto en AI bedrijven steeds dominanter

Quote 500: Crypto en AI bedrijven steeds dominanter

De nieuwe Quote 500 laat één trend overduidelijk zien: het tijdperk van traditionele familievermogens maakt plaats voor dat van tech miljardairs. Waar vroeger sokken, schepen en supermarkten de bron waren van groot kapitaal, zijn het nu crypto en AI ondernemers die de lijst domineren. Check onze Discord Connect met "like-minded" crypto enthousiastelingen Leer gratis de basis van Bitcoin & trading - stap voor stap, zonder voorkennis. Krijg duidelijke uitleg & charts van ervaren analisten. Sluit je aan bij een community die samen groeit. Nu naar Discord Nieuwe rijkdom in recordtempo Volgens het zakenblad Quote groeit het vermogen van Nederlandse miljonairs en miljardairs “over de hele linie”, maar het zijn vooral AI en crypto die het geld razendsnel laten rollen. “Waar het vroeger decennia of zelfs generaties duurde om een groot vermogen op te bouwen, gebeurt dat nu soms binnen enkele jaren.” Een treffend voorbeeld is Douwe Kiela, die slechts tweeënhalf jaar na de oprichting van zijn AI bedrijf al in de Quote 500 verschijnt. De ondergrens om in de lijst te komen ligt dit jaar op €140 miljoen, een stijging van €10 miljoen ten opzichte van vorig jaar. Crypto miljardairs aan de top De grootste vermogenssprong komt dit jaar van John en Marius Jansen, 2 ondernemers die hun crypto bedrijf verkochten en hun vermogen zagen stijgen van €600 miljoen naar €1,7 miljard. Hun transactie laat zien hoe snel waardecreatie in de crypto sector kan plaatsvinden, een contrast met de langzame vermogensgroei van traditionele industrieën. Hoewel de cryptomarkt grillig blijft, lijkt de invloed van blockchain ondernemers op de Nederlandse elite structureel te worden. Waar eerdere edities van de Quote 500 werden gedomineerd door vastgoed, scheepvaart of retail, komt crypto nu naar voren als nieuwe economische macht. Nieuwe cryptomuntenKom als eerste te weten wat de nieuwste cryptomunten van dit moment zijn! Elke crypto investeerder is er naar op zoek: een nieuwe crypto met groot groeipotentieel. Na de afgelopen crash van de cryptomarkt, is Bitcoin volgens analisten weer klaar voor een stijging. Dat lijkt ook voor altcoins het geval te zijn, nu miljardairs weer volop investeren. Dit zou zomaar eens een nieuwe crypto bull run af kunnen… Continue reading Quote 500: Crypto en AI bedrijven steeds dominanter document.addEventListener('DOMContentLoaded', function() { var screenWidth = window.innerWidth; var excerpts = document.querySelectorAll('.lees-ook-description'); excerpts.forEach(function(description) { var excerpt = description.getAttribute('data-description'); var wordLimit = screenWidth wordLimit) { var trimmedDescription = excerpt.split(' ').slice(0, wordLimit).join(' ') + '...'; description.textContent = trimmedDescription; } }); }); AI als nieuwe gold rush Naast crypto is AI de tweede motor achter de vermogensgroei. Startups in machine learning, dataverwerking en andere AI toepassingen trekken recordinvesteringen, vaak vanuit de Verenigde Staten of het Midden-Oosten. De opkomst van AI ondernemers in de Quote 500 bevestigt dat Nederland zich snel ontwikkelt tot een technologische broedplaats. Bedrijven die enkele jaren geleden nog onbekend waren, hebben nu waarderingen van honderden miljoenen. Klassieke namen dalen of verdwijnen Tegenover de digitale nieuwkomers staan de dalers uit de ‘oude economie’. Zo verliest Els Blokker, weduwe van winkelketen magnaat Jaap Blokker, haar status als miljardair nadat het familievermogen door ruzie werd opgesplitst in drie delen. Ook scheepsbouwer Kommer Damen zag zijn vermogen halveren tot €235 miljoen na tegenvallers bij defensie projecten. En waar tech miljardairs binnenkomen, verdwijnen de sokken en schoenen koningen. Onder anderen Marc Brouwers en de broers Pauli en René Nelissen zijn niet langer rijk genoeg om op de lijst te staan. Een verschuiving van macht en mentaliteit Het aantal miljardairs in Nederland blijft stabiel op 52, maar de samenstelling verandert. De nieuwe elite is jonger, internationaler en digitaal. Hun vermogen komt niet uit bakstenen of olie, maar uit code, algoritmes en tokens. De totale rijkdom van de Quote 500 steeg met 7,9% tot bijna €273 miljard. Het gemiddelde vermogen bedraagt nu €545,5 miljoen. Charlene de Carvalho-Heineken blijft met €12,3 miljard de onbetwiste nummer één, maar de volgende generatie klopt op de deur. Best wallet - betrouwbare en anonieme wallet Best wallet - betrouwbare en anonieme wallet Meer dan 60 chains beschikbaar voor alle crypto Vroege toegang tot nieuwe projecten Hoge staking belongingen Lage transactiekosten Best wallet review Koop nu via Best Wallet Let op: cryptocurrency is een zeer volatiele en ongereguleerde investering. Doe je eigen onderzoek. Het bericht Quote 500: Crypto en AI bedrijven steeds dominanter is geschreven door Gijs Smit en verscheen als eerst op Bitcoinmagazine.nl.
Share
2025/10/29 13:46