This report documents the successful deployment of a quantum memory architecture that combines dynamical decoupling (Hahn Echo) with mid-circuit qubit recyclingThis report documents the successful deployment of a quantum memory architecture that combines dynamical decoupling (Hahn Echo) with mid-circuit qubit recycling

Experiment Log: Validating Echo-Stabilized Recursive Routing on IBM Heron

2025/12/15 13:11

This report documents the successful deployment of a quantum memory architecture that combines dynamical decoupling (Hahn Echo) with mid-circuit qubit recycling. The experiment was executed on the IBM ibm_torino processor. The data confirms that a qubit state can be actively stabilized against dephasing while the surrounding circuit resources are reset and reused in real-time.

The Engineering Constraints

Running complex circuits on current hardware faces two primary failure modes:

  1. Limited Qubit Count: Running out of physical registers for routing.
  2. Decoherence ($T_2$ Decay): Information loss due to magnetic noise during idle periods.

The "Echo-Stabilized Recursive Link" addresses both by running two operations in parallel:

  • Perceptual Grid Engine Architecture: Teleporting data, then immediately resetting the "Sender" qubits to the ground state $|0\rangle$ to free them for new tasks.
  • Active Stabilization: Applying an $X_{\pi}$ pulse sequence to the "Buffer" qubit to refocus the state vector and cancel low-frequency noise during the hold duration.

Implementation

The experiment utilized a 3-qubit register managed by Qiskit 1.3 primitives.

  • Q0 (Source): Encoded with a "Pilot State" ($Ry(\theta)$), aiming for a 75% probability of $|0\rangle$.
  • Q1 (Bridge): Used for entanglement generation.
  • Q2 (Buffer): Used for storage.

The Control Logic:

The following Python function was deployed to the Quantum Processing Unit (QPU). It enforces a conditional reset on Q0/Q1 while simultaneously executing the Hahn Echo on Q2.

def create_stabilized_circuit(delay_us=20): # Setup Registers qr = QuantumRegister(3, 'q') cr_hop1 = ClassicalRegister(2, 'hop1') cr_hop2 = ClassicalRegister(2, 'hop2') cr_final = ClassicalRegister(1, 'result') qc = QuantumCircuit(qr, cr_hop1, cr_hop2, cr_final) # 1. Initialize Pilot State (~75% |0>) qc.ry(2 * np.arccos(np.sqrt(0.75)), 0) qc.barrier() # 2. Outbound Teleportation (Source -> Buffer) qc.h(1) qc.cx(1, 2) qc.cx(0, 1) qc.h(0) qc.measure(0, cr_hop1[0]) qc.measure(1, cr_hop1[1]) # Feed Forward Correction with qc.if_test((cr_hop1[1], 1)): qc.x(2) with qc.if_test((cr_hop1[0], 1)): qc.z(2) qc.barrier() # 3. Parallel Operation (The Innovation) # A. Reset Sender/Bridge for Reuse qc.reset(0) qc.reset(1) # B. Hahn Echo on Buffer if delay_us > 0: half_wait = delay_us / 2 qc.delay(half_wait, 2, unit='us') qc.x(2) # Invert qc.delay(half_wait, 2, unit='us') qc.x(2) # Restore qc.barrier() # 4. Inbound Teleportation (Buffer -> Recycled Source) qc.h(1) qc.cx(1, 0) # Entangle with the freshly reset q0 qc.cx(2, 1) qc.h(2) qc.measure(2, cr_hop2[0]) qc.measure(1, cr_hop2[1]) with qc.if_test((cr_hop2[1], 1)): qc.x(0) with qc.if_test((cr_hop2[0], 1)): qc.z(0) # 5. Verification qc.measure(0, cr_final) return qc

Hardware Results

The circuit was executed on the ibm_torino system (Heron processor) with two distinct configurations to isolate variables.

1. Structural Baseline ($0\mu s$ Delay)

  • Purpose: Verify the logic of the mid-circuit reset and routing without the penalty of time decay.
  • Target: 75.00%
  • Measured: 71.66%
  • Result: Validated. The reset operation successfully cleared the qubits for reuse.

2. Active Stabilization Test ($20\mu s$ Delay)

  • Purpose: Verify that the Hahn Echo sequence preserves the state during a hold period greater than zero.
  • Target: 75.00%
  • Measured: 68.70%
  • Result: Validated. Signal loss was restricted to <3% compared to the baseline.

Conclusion

The data indicates that the "Echo-Stabilized Recursive Link" is a viable architecture for NISQ hardware. The system successfully maintained signal integrity significantly above the random noise floor (50%), proving that dynamic qubit reuse and active error suppression can be executed concurrently.

Methodology Note

This project was executed using a "Centaur" workflow. I, Damian Griggs, acted as the Architect, defining the system constraints, logic, and experimental design. The code generation and syntax validation were handled by an AI agent (Gemini) acting as the functional builder. This separation of concerns allowed for rapid prototyping and deployment to the physical hardware.

\ \ Want to see the full code on GitHub?

https://github.com/damianwgriggs/Perceptual-Grid-Engine-Quantum-Experiment/blob/main/Echo-Stabilized%20Recursive%20Link.ipynb

Market Opportunity
Echo Logo
Echo Price(ECHO)
$0,01438
$0,01438$0,01438
+0,62%
USD
Echo (ECHO) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Bitcoin Active Addresses Hit 12-Month Low as Miner Revenue Drops 20%

Bitcoin Active Addresses Hit 12-Month Low as Miner Revenue Drops 20%

Bitcoin's 7-day moving average of active addresses has declined to approximately 660,000, marking the lowest level observed in the past 12 months. This significant drop in on-chain activity comes alongside a notable decrease in daily miner revenue, which has fallen from around $50 million during the third quarter to roughly $40 million at present.
Share
MEXC NEWS2025/12/16 10:42
Meme Coins Will Evolve and Return, Says MoonPay President Keith Grossman

Meme Coins Will Evolve and Return, Says MoonPay President Keith Grossman

MoonPay president Keith Grossman has offered a thought-provoking perspective on the future of meme coins, suggesting they will return in a different form despite current market skepticism. According to Grossman, the real innovation behind meme coins lies not in their humorous branding but in their ability to tokenize attention easily and at low cost.
Share
MEXC NEWS2025/12/16 10:44
Phala Embraces Ethereum L2 to Power the Future of AI and GPU Workloads

Phala Embraces Ethereum L2 to Power the Future of AI and GPU Workloads

TLDR Phala exits Polkadot, embraces Ethereum L2 for confidential AI compute. Phala shifts to Ethereum L2, boosting scalability and GPU-based workloads. Phala migrates from Polkadot to Ethereum L2 for future-ready compute. Ethereum L2 becomes Phala’s base for AI, staking, and governance. Phala’s full pivot to Ethereum L2 enables enterprise-scale confidential compute. Phala has announced a [...] The post Phala Embraces Ethereum L2 to Power the Future of AI and GPU Workloads appeared first on CoinCentral.
Share
Coincentral2025/10/10 19:49