Early-stage startup valuations are often based on qualitative factors rather than financial modeling, since early-stage companies have limited historical data. Early-stage startup valuations are often based on qualitative factors rather than financial modeling, since early-stage companies have limited historical data.

Your AI Revenue is Not Recurrent

Early-stage startup valuations are often based on qualitative factors rather than financial modeling, since early-stage companies have limited historical data. Investors evaluate the founding team’s experience, the size and urgency of the market, early signs of product-market fit, technology defensibility, and the competitive landscape. They also benchmark comparable deals and evaluate ownership requirements for their investment.  

As a company begins generating predictable revenue, that revenue becomes a powerful anchor for valuation by providing a quantifiable signal of traction. AI startups reach this stage far faster than previous generations of software companies. AI products can scale quickly, onboard users at remarkable speed, and monetize through usage. Even very young companies can show steep revenue curves. This accelerates both growth and valuation. 

Annual Recurring Revenue (ARR) remains the core metric for SaaS and AI subscription businesses. ARR captures contracted, predictable revenue expected each year and excludes one-time fees, overages, or experimental spend. ARR matters because it indicates the business’s growth rate, the durability of its revenue base, the depth of customer commitment, and is one cornerstone that sets company valuation. 

In this post, we will define experimental revenue, explain why it behaves differently from ARR, and offer a framework to convert revenue into something more recurrent and predictable.  

What is ERR? 

Experimentation is fundamental to AI development. Training a model is inherently iterative, combining data, algorithms, and configuration in rapid learning loops until the model meets business requirements. GenAI development follows this same pattern. Fine-tuning models with proprietary data demands repeated cycles of testing and refinement.  

For decades, most organizations operated with Software 1.0. The widespread adoption of ChatGPT pushed enterprises into Software 2.0, triggering large-scale experimentation across systems, workflows, and products. 

This experimentation, combined with massive demand from organizations new to AI, generates large volumes of non-committed, highly volatile revenue. We define this as Experimental Run-Rate Revenue (ERR), which is neither annual nor recurring. Usage often fluctuates dramatically from one month to the next. Many customers experiment for a few months, spike usage during development cycles, and then reduce or eliminate spend once the experiment concludes. 

Key Characteristics of ERR 

The challenge with early AI startups is that their growth often appears smooth at the top line. Companies can grow 10-15% month over month, or three to five times year over year, creating the illusion of predictable momentum.  

New customers continue to sign up every month, reinforcing the perception of steady, reliable growth. At a glance, ERR can resemble consumer-driven revenue patterns. For instance, Netflix subscribers pay monthly without contractual commitments, yet remain for more than four years on average, while Spotify subscribers stay around two years and Disney subscribers about 18 months.  

A closer look at customer behavior reveals a very different picture. AI usage is highly non-linear. A customer may start with modest usage for two months, surge for the next two months as they process proprietary data or fine-tune a model, and then drop to zero after the internal project is deprioritized. The average duration of these experimental cycles is often far shorter than 12 months, partly because the category is still young and historical data is limited. 

These surges typically reflect short-term development cycles rather than durable production workloads. AI project failure rates remain high across studies, often estimated at 70 to 85%, with some reports placing them as high as 95%. This volatility is a core characteristic of ERR, highlighting why early AI revenue should be interpreted differently from traditional SaaS revenue.

From ERR to ARR 

To increase the likelihood that AI projects succeed and that ERR converts to ARR, startups must understand the customer’s use case at a deeper level. Key questions include: 

  • What business problem is my customer trying to solve?  
  • What does business success look like and how do you measure it? 
  • Who is the solution for and what is their level of technical background? 
  • Who is the customer internal champion?  

For example, selling an AI development platform to a company that is building an external-facing agent for its customers tends to have a higher chance of becoming ARR, because the solution ties directly to revenue. In contrast, internal productivity use cases may have vague ROI, bottom-line influence and often stall or get deprioritized.  

Founders also need to know where the customer is in their AI journey, including their level of maturity and technical sophistication. Have they already tried building the solution using open-source tools and hit limitations, or are they just beginning to explore? This shapes expectations and risk. 

AI projects fail for many reasons: poor data quality, limited resources, weak execution, unrealistic expectations, and unclear business success criteria. The last two can be validated early in the sales cycle. Clarifying the customer’s problem, what they have already attempted, and where they are stuck helps reduce the risk of churn and improves the likelihood that experimental usage becomes sustained usage.  

Unlike AI benchmarks that focus solely on accuracy, real project success requires translating model performance into business outcomes. For instance, if a company is trying to detect fraud, larger fraud amounts may be prioritized, and minimizing false positives becomes critical to avoid alienating customers. Success requires defining the business KPIs and thresholds before development begins. 

Startups should also segment usage into buckets such as committed versus uncommitted, production versus experimentation, and stable versus volatile. Analyzing retention and conversion rates across these segments allows teams to build weighted models that estimate which portions of ERR are likely to convert to ARR. This disciplined approach gives both founders and investors a clearer picture of true revenue durability. 

The Valuation Impact 

AI startups generally operate with lower gross margins in the 50-60% range and higher capital expenditures than traditional B2B SaaS companies, which often achieve 70-85% with minimal infrastructure costs. This gap is largely driven by the higher compute, storage, and infrastructure costs associated with training and running AI models, costs that are minimal in classic SaaS models. 

In theory, these economics should produce lower valuation multiples than traditional SaaS. In practice, AI startup valuations are soaring. Investor enthusiasm has pushed AI-native companies to command substantial premiums and raise larger rounds more quickly, at elevated multiples.  

According to Finro, seed-stage AI companies are valued at an average of 20.8 times revenue while generating about $2M in ARR. Series A and B companies achieve even higher multiples at 39.0 and 31.7 times revenue. These valuations reflect strong momentum, early traction, and market positioning rather than mature financial metrics. 

Consider a seed-stage startup generating $1.4M in monthly revenue. Traditional B2B SaaS logic would annualize this to $16.8M ARR ($1.4M × 12) and apply a 15 times multiple, resulting in a $252M valuation. 

Segmenting the revenue tells a different story. Suppose $0.4M of the monthly revenue comes from customers in production, while $1M comes from noncommitted experimental usage.  

  • Production ARR: $0.4M × 12 = $4.8M 
  • Experimental ARR: $1M × 12 = $12M 

Applying differentiated multiples, the valuation becomes: 

  • Production at 15 times: $4.8M × 15 = $72M 
  • Experimental at 5 times: $12M × 5 = $60M 

The adjusted valuation becomes $132M, far below the $252M headline, illustrating how ERR can distort valuations if not properly segmented. 

The market has not fully priced in the lower gross margins and high levels of ERR typical of early-stage AI companies. Over time, as business models mature and margins improve, we expect valuation multiples to normalize. 

Conclusion: A Useful but High-Velocity Metric 

ERR is becoming a defining metric for the AI era because it reflects the unprecedented pace at which AI startups can grow. When used transparently and paired with segmentation and conversion metrics, ERR provides a more complete view of revenue quality. The combination of ERR and ARR shows both short-term momentum and long-term durability.  

As AI adoption accelerates, the ability to correctly interpret and communicate ERR will become increasingly essential for founders, operators, and investors. 

Market Opportunity
Notcoin Logo
Notcoin Price(NOT)
$0.0004485
$0.0004485$0.0004485
+2.60%
USD
Notcoin (NOT) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Gold Hits $3,700 as Sprott’s Wong Says Dollar’s Store-of-Value Crown May Slip

Gold Hits $3,700 as Sprott’s Wong Says Dollar’s Store-of-Value Crown May Slip

The post Gold Hits $3,700 as Sprott’s Wong Says Dollar’s Store-of-Value Crown May Slip appeared on BitcoinEthereumNews.com. Gold is strutting its way into record territory, smashing through $3,700 an ounce Wednesday morning, as Sprott Asset Management strategist Paul Wong says the yellow metal may finally snatch the dollar’s most coveted role: store of value. Wong Warns: Fiscal Dominance Puts U.S. Dollar on Notice, Gold on Top Gold prices eased slightly to $3,678.9 […] Source: https://news.bitcoin.com/gold-hits-3700-as-sprotts-wong-says-dollars-store-of-value-crown-may-slip/
Share
BitcoinEthereumNews2025/09/18 00:33
CEO Sandeep Nailwal Shared Highlights About RWA on Polygon

CEO Sandeep Nailwal Shared Highlights About RWA on Polygon

The post CEO Sandeep Nailwal Shared Highlights About RWA on Polygon appeared on BitcoinEthereumNews.com. Polygon CEO Sandeep Nailwal highlighted Polygon’s lead in global bonds, Spiko US T-Bill, and Spiko Euro T-Bill. Polygon published an X post to share that its roadmap to GigaGas was still scaling. Sentiments around POL price were last seen to be bearish. Polygon CEO Sandeep Nailwal shared key pointers from the Dune and RWA.xyz report. These pertain to highlights about RWA on Polygon. Simultaneously, Polygon underlined its roadmap towards GigaGas. Sentiments around POL price were last seen fumbling under bearish emotions. Polygon CEO Sandeep Nailwal on Polygon RWA CEO Sandeep Nailwal highlighted three key points from the Dune and RWA.xyz report. The Chief Executive of Polygon maintained that Polygon PoS was hosting RWA TVL worth $1.13 billion across 269 assets plus 2,900 holders. Nailwal confirmed from the report that RWA was happening on Polygon. The Dune and https://t.co/W6WSFlHoQF report on RWA is out and it shows that RWA is happening on Polygon. Here are a few highlights: – Leading in Global Bonds: Polygon holds 62% share of tokenized global bonds (driven by Spiko’s euro MMF and Cashlink euro issues) – Spiko U.S.… — Sandeep | CEO, Polygon Foundation (※,※) (@sandeepnailwal) September 17, 2025 The X post published by Polygon CEO Sandeep Nailwal underlined that the ecosystem was leading in global bonds by holding a 62% share of tokenized global bonds. He further highlighted that Polygon was leading with Spiko US T-Bill at approximately 29% share of TVL along with Ethereum, adding that the ecosystem had more than 50% share in the number of holders. Finally, Sandeep highlighted from the report that there was a strong adoption for Spiko Euro T-Bill with 38% share of TVL. He added that 68% of returns were on Polygon across all the chains. Polygon Roadmap to GigaGas In a different update from Polygon, the community…
Share
BitcoinEthereumNews2025/09/18 01:10
PayPal Expands to Nine New Chains & Metamask Token Confirmed

PayPal Expands to Nine New Chains & Metamask Token Confirmed

The post PayPal Expands to Nine New Chains & Metamask Token Confirmed appeared on BitcoinEthereumNews.com. PayPal’s US dollar-backed stablecoin – $PYUSD – is going permissionless and multichain across nine blockchains. Meanwhile, MetaMask, the world’s leading self-custody wallet, is finally entering the token game. With crypto adoption on the rise, now’s a great time to consider $BEST. The reason is that it’s the native token of Best Wallet, a non-custodial crypto app built for the next wave of digital asset growth. $PYUSD Set to Launch Across Avalanche, Sei, Abstract $PYUSD currently supports Ethereum, Solana, Arbitrum, and Stellar. However, its permissionless upgrade, $PYUSD0, will expand its reach across numerous chains: Avalanche, Sei, Abstract, Ink, Stable, Tron, Berachain, and Flow. In doing so, $PYUSD0 can reach the most demanding markets. Plus, users who want to gain faster access to the stablecoin can do so without relying on banks and without relying on platforms like Venmo or PayPal. ‘By working together [with LayerZero], we will enable PYUSD to reach new markets faster while maintaining compliance and composability from day one.’ — David Weber, Head of Ecosystem, PayPal USD. The market’s already reacting to the expansion with intense enthusiasm. Since the news broke out, $PYUSD’s market cap has surpassed $1.3B for the first time. And it’s not the only major crypto move that PayPal has recently made. Earlier this week, it also announced that it’ll soon expand peer-to-peer crypto payments through its new Links feature. Source: X (PayPal) It’ll enable you to move digital assets like $PYUSD, BTC, and $ETH through easily shareable payment links via texts, direct messages, or emails. Its ultimate aim? To make crypto transactions faster and simpler across PayPal, Venmo, and compatible wallets worldwide. And it’s not the only financial titan making big crypto moves. In a recent interview with The Block, ConsenSys CEO Joseph Lubin addressed long-running speculation over a potential MetaMask token. ‘The MASK…
Share
BitcoinEthereumNews2025/09/20 01:44