The post NVIDIA cuTile Python Guide Shows 90% cuBLAS Performance for Matrix Ops appeared on BitcoinEthereumNews.com. Timothy Morano Jan 14, 2026 21:15 NVIDIAThe post NVIDIA cuTile Python Guide Shows 90% cuBLAS Performance for Matrix Ops appeared on BitcoinEthereumNews.com. Timothy Morano Jan 14, 2026 21:15 NVIDIA

NVIDIA cuTile Python Guide Shows 90% cuBLAS Performance for Matrix Ops



Timothy Morano
Jan 14, 2026 21:15

NVIDIA releases detailed cuTile Python tutorial for Blackwell GPUs, demonstrating matrix multiplication achieving over 90% of cuBLAS performance with simplified code.

NVIDIA has published a comprehensive developer guide for its cuTile Python framework, demonstrating how the new tile-based programming model can achieve over 90% of cuBLAS performance for matrix multiplication operations on Blackwell architecture GPUs.

The tutorial, authored by NVIDIA engineer Jinman Xie, walks developers through implementing high-performance matrix multiplication using the cuTile library introduced with CUDA 13.1 in December 2025. Testing on an RTX 5080 showed the cuTile implementation matching PyTorch’s cuBLAS-backed operations across matrix sizes from 1024×1024 to 16384×16384.

What cuTile Changes for Developers

The framework represents NVIDIA’s shift away from traditional thread-level GPU programming. Instead of managing individual threads, developers now work with “tiles” – larger data chunks that the compiler automatically optimizes for tensor core execution.

A complete matrix multiplication kernel in cuTile requires roughly 30 lines of Python code. The key operations: load tiles from matrices A and B, call ct.mma() for matrix multiply-accumulate (which auto-invokes tensor cores), and store results. The framework handles thread synchronization and memory access patterns internally.

Current requirements limit adoption: CUDA 13.1 minimum, Blackwell architecture only (RTX 50 series, compute capability 10.x and 12.x), and Python 3.10+. NVIDIA indicates broader architecture support will come in future CUDA releases.

Performance Optimization Details

The guide covers “swizzle” optimization – a technique that remaps block IDs to improve cache hit rates. NVIDIA’s example shows swizzled memory access reducing total data loads by 20% compared to linear row access, translating directly to throughput gains.

Tile size configuration matters significantly. For float16/bfloat16 operations, the tutorial recommends 128×256×64 tiles; for float32, 32×32×32. These aren’t universal – optimal parameters depend on matrix dimensions, GPU architecture, and available shared memory.

Market Implications

NVIDIA shares traded at $182.06 as of January 14, down 2.02% on the day. The company’s push to simplify GPU programming comes as competition in AI accelerator markets intensifies.

The cuTile framework matters because matrix multiplication underlies virtually all neural network operations. Reducing the expertise barrier for writing performant GPU code could expand NVIDIA’s developer ecosystem – a key competitive moat as AMD and custom silicon vendors chase the AI training and inference markets.

Full code examples and benchmarks are available in NVIDIA’s TileGym repository. The autotuner tool can automatically determine optimal tile parameters for specific workloads, addressing one of the main friction points in GPU kernel optimization.

Image source: Shutterstock

Source: https://blockchain.news/news/nvidia-cutile-python-matrix-multiply-blackwell-tutorial

Market Opportunity
OPSWAP Logo
OPSWAP Price(OPS)
$0.006766
$0.006766$0.006766
-16.23%
USD
OPSWAP (OPS) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Cashing In On University Patents Means Giving Up On Our Innovation Future

Cashing In On University Patents Means Giving Up On Our Innovation Future

The post Cashing In On University Patents Means Giving Up On Our Innovation Future appeared on BitcoinEthereumNews.com. “It’s a raid on American innovation that would deliver pennies to the Treasury while kneecapping the very engine of our economic and medical progress,” writes Pipes. Getty Images Washington is addicted to taxing success. Now, Commerce Secretary Howard Lutnick is floating a plan to skim half the patent earnings from inventions developed at universities with federal funding. It’s being sold as a way to shore up programs like Social Security. In reality, it’s a raid on American innovation that would deliver pennies to the Treasury while kneecapping the very engine of our economic and medical progress. Yes, taxpayer dollars support early-stage research. But the real payoff comes later—in the jobs created, cures discovered, and industries launched when universities and private industry turn those discoveries into real products. By comparison, the sums at stake in patent licensing are trivial. Universities collectively earn only about $3.6 billion annually in patent income—less than the federal government spends on Social Security in a single day. Even confiscating half would barely register against a $6 trillion federal budget. And yet the damage from such a policy would be anything but trivial. The true return on taxpayer investment isn’t in licensing checks sent to Washington, but in the downstream economic activity that federally supported research unleashes. Thanks to the bipartisan Bayh-Dole Act of 1980, universities and private industry have powerful incentives to translate early-stage discoveries into real-world products. Before Bayh-Dole, the government hoarded patents from federally funded research, and fewer than 5% were ever licensed. Once universities could own and license their own inventions, innovation exploded. The result has been one of the best returns on investment in government history. Since 1996, university research has added nearly $2 trillion to U.S. industrial output, supported 6.5 million jobs, and launched more than 19,000 startups. Those companies pay…
Share
BitcoinEthereumNews2025/09/18 03:26
Stellar (XLM) Price Analysis for February 1

Stellar (XLM) Price Analysis for February 1

The post Stellar (XLM) Price Analysis for February 1 appeared on BitcoinEthereumNews.com. The crypto market keeps reaching new local lows, according to CoinStats
Share
BitcoinEthereumNews2026/02/02 05:21
PEPE Price Prediction: Meme Coin Targets Recovery Despite Technical Weakness

PEPE Price Prediction: Meme Coin Targets Recovery Despite Technical Weakness

The post PEPE Price Prediction: Meme Coin Targets Recovery Despite Technical Weakness appeared on BitcoinEthereumNews.com. Timothy Morano Feb 01, 2026 16:58
Share
BitcoinEthereumNews2026/02/02 05:00