MaGGIe excels in hair rendering and instance separation on natural images, outperforming MGM and InstMatt in complex, multi-instance scenarios.MaGGIe excels in hair rendering and instance separation on natural images, outperforming MGM and InstMatt in complex, multi-instance scenarios.

Robust Mask-Guided Matting: Managing Noisy Inputs and Object Versatility

Abstract and 1. Introduction

  1. Related Works

  2. MaGGIe

    3.1. Efficient Masked Guided Instance Matting

    3.2. Feature-Matte Temporal Consistency

  3. Instance Matting Datasets

    4.1. Image Instance Matting and 4.2. Video Instance Matting

  4. Experiments

    5.1. Pre-training on image data

    5.2. Training on video data

  5. Discussion and References

\ Supplementary Material

  1. Architecture details

  2. Image matting

    8.1. Dataset generation and preparation

    8.2. Training details

    8.3. Quantitative details

    8.4. More qualitative results on natural images

  3. Video matting

    9.1. Dataset generation

    9.2. Training details

    9.3. Quantitative details

    9.4. More qualitative results

8.4. More qualitative results on natural images

Fig. 13 showcases our model’s performance in challenging scenarios, particularly in accurately rendering hair regions. Our framework consistently outperforms MGM⋆ in detail preservation, especially in complex instance interactions. In comparison with InstMatt, our model exhibits superior instance separation and detail accuracy in ambiguous regions.

\ Fig. 14 and Fig. 15 illustrate the performance of our model and previous works in extreme cases involving multiple instances. While MGM⋆ struggles with noise and accuracy in dense instance scenarios, our model maintains high precision. InstMatt, without additional training data, shows limitations in these complex settings.

\ The robustness of our mask-guided approach is further demonstrated in Fig. 16. Here, we highlight the challenges faced by MGM variants and SparseMat in predicting missing parts in mask inputs, which our model addresses. However, it is important to note that our model is not designed as a human instance segmentation network. As shown in Fig. 17, our framework adheres to the input guidance, ensuring precise alpha matte prediction even with multiple instances in the same mask.

\ Lastly, Fig. 12 and Fig. 11 emphasize our model’s generalization capabilities. The model accurately extracts both human subjects and other objects from backgrounds, showcasing its versatility across various scenarios and object types.

\ All examples are Internet images without ground-truth and the mask from r101fpn400e are used as the guidance.

\ Figure 13. Our model produces highly detailed alpha matte on natural images. Our results show that it is accurate and comparable with previous instance-agnostic and instance-awareness methods without expensive computational costs. Red squares zoom in the detail regions for each instance. (Best viewed in color and digital zoom).

\ Figure 14. Our frameworks precisely separate instances in an extreme case with many instances. While MGM often causes the overlapping between instances and MGM⋆ contains noises, ours produces on-par results with InstMatt trained on the external dataset. Red arrow indicates the errors. (Best viewed in color and digital zoom).

\ Figure 15. Our frameworks precisely separate instances in a single pass. The proposed solution shows comparable results with InstMatt and MGM without running the prediction/refinement five times. Red arrow indicates the errors. (Best viewed in color and digital zoom).

\ Figure 16. Unlike MGM and SparseMat, our model is robust to the input guidance mask. With the attention head, our model produces more stable results to mask inputs without complex refinement between instances like InstMatt. Red arrow indicates the errors. (Best viewed in color and digital zoom).

\ Figure 17. Our solution works correctly with multi-instance mask guidances. When multiple instances exist in one guidance mask, we still produce the correct union alpha matte for those instances. Red arrow indicates the errors or the zoom-in region in red box. (Best viewed in color and digital zoom).

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining.

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining. (Continued)

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining. (Continued)

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining. (Continued)

\ Table 13. The effectiveness of proposed temporal consistency modules on V-HIM60 (Extension of Table 6). The combination of bi-directional Conv-GRU and forward-backward fusion achieves the best overall performance on three test sets. Bold highlights the best for each level.

\

:::info Authors:

(1) Chuong Huynh, University of Maryland, College Park (chuonghm@cs.umd.edu);

(2) Seoung Wug Oh, Adobe Research (seoh,jolee@adobe.com);

(3) Abhinav Shrivastava, University of Maryland, College Park (abhinav@cs.umd.edu);

(4) Joon-Young Lee, Adobe Research (jolee@adobe.com).

:::


:::info This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

\

Market Opportunity
Mask Network Logo
Mask Network Price(MASK)
$0.5802
$0.5802$0.5802
+1.18%
USD
Mask Network (MASK) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

WTO report: Artificial intelligence could drive nearly 40% of global trade growth by 2040

WTO report: Artificial intelligence could drive nearly 40% of global trade growth by 2040

PANews reported on December 21 that, according to Jinshi, the World Trade Organization's "World Trade Report 2025" indicates that, with supporting policies in place
Share
PANews2025/12/21 11:40
Bitcoin 8% Gains Already Make September 2025 Its Second Best

Bitcoin 8% Gains Already Make September 2025 Its Second Best

The post Bitcoin 8% Gains Already Make September 2025 Its Second Best appeared on BitcoinEthereumNews.com. Key points: Bitcoin is bucking seasonality trends by adding 8%, making this September its best since 2012. September 2025 would need to see 20% upside to become Bitcoin’s strongest ever. BTC price volatility is at levels rarely seen before in an unusual bull cycle. Bitcoin (BTC) has gained more this September than any year since 2012, a new bull market record. Historical price data from CoinGlass and BiTBO confirms that at 8%, Bitcoin’s September 2025 upside is its second-best ever. Bitcoin avoiding “Rektember” with 8% gains September is traditionally Bitcoin’s weakest month, with average losses of around 8%. BTC/USD monthly returns (screenshot). Source: CoinGlass This year, the stakes are high for BTC price seasonality, as historical patterns demand the next bull market peak and other risk assets set repeated new all-time highs. While both gold and the S&P 500 are in price discovery, BTC/USD has coiled throughout September after setting new highs of its own the month prior. Even at “just” 8%, however, this September’s performance is currently enough to make it Bitcoin’s strongest in 13 years. The only time that the ninth month of the year was more profitable for Bitcoin bulls was in 2012, when BTC/USD gained about 19.8%. Last year, upside topped out at 7.3%. BTC/USD monthly returns. Source: BiTBO BTC price volatility vanishes The figures underscore a highly unusual bull market peak year for Bitcoin. Related: BTC ‘pricing in’ what’s coming: 5 things to know in Bitcoin this week Unlike previous bull markets, BTC price volatility has died off in 2025, against the expectations of longtime market participants based on prior performance. CoinGlass data shows volatility dropping to levels not seen in over a decade, with a particularly sharp drop from April onward. Bitcoin historical volatility (screenshot). Source: CoinGlass Onchain analytics firm Glassnode, meanwhile, highlights the…
Share
BitcoinEthereumNews2025/09/18 11:09
Dragonfly Capital has deposited 6 million MNT tokens into Bybit in the past 7 days, worth $6.95 million.

Dragonfly Capital has deposited 6 million MNT tokens into Bybit in the past 7 days, worth $6.95 million.

PANews reported on December 21 that Dragonfly Capital continues to deposit MNT into Bybit. Over the past seven days, it has deposited a total of 6 million MNT (
Share
PANews2025/12/21 11:16