微軟力推 Windows 11 的 AI 功能,卻引發用戶反彈。高層對用戶不感興趣的態度表示不解,甚至批評為「憤世嫉俗者」,網友怒嗆:強推 AI 是炒股價,微軟高層脫離現實,對 AI 的理解有偏差。微軟正積極為 Windows 11 加入原生 AI 功能,但使用者的反應卻不如預期。微軟 AI 業務 CEO 穆斯塔法・蘇萊曼(Mustafa Suleyman)日前公開表示,對於部分用戶對 AI 功能「表現出不感興趣」的態度感到震驚與不解,甚至批評這些人是「憤世嫉俗者」——引來更大的反彈聲浪。 微軟高層連發言都讓人火大:網友嗆聲「你們才脫離現實」 先前微軟 Windows + 裝置部門總裁 Pavan Davuluri 才剛在 X(前推特)上發文推廣 Windows 11 將全面 AI 化,結果慘遭網友灌爆留言,最後還不得不關閉留言功能。雖然他後來發文安撫開發者與使用者的不滿,承諾會改善可靠性與體驗,但明言:「AI 推進是既定方向,無可改變。」 原本風波稍歇,結果蘇萊曼的發言又火上加油。他強調無法理解為何大家對微軟整合 AI 的做法表現出冷感,並稱這些態度負面的人「憤世嫉俗」。雖然這次他沒有關留言功能,卻仍引來上千則酸言酸語。 不少留言都指出,大家其實對 AI 有興趣,只是不信任微軟現在「強推」的方式,認為這不是為了提升使用者體驗,而是為了安撫股東、迎合市場熱潮,甚至有人直言:「這就是炒股價的AI」。 科技媒體《The Register》也發文評論此事,認為微軟高層與一般使用者之間的感知已經出現巨大落差,將批評者視為「反對者」,這種態度顯得高傲且脫離現實。   延伸閱讀:Windows 11 十月更新爆發嚴重 Bug!工作管理員無限「分身」狂吃記憶體 延伸閱讀:微軟解釋為什麼 Windows 11 會安裝「舊版驅動程式」:日期不是重點,系統會挑最適合的版本 延伸閱讀:用了快十年終於統一!Windows 11暗黑模式這次真的「黑到底」  加入T客邦Facebook粉絲團微軟力推 Windows 11 的 AI 功能,卻引發用戶反彈。高層對用戶不感興趣的態度表示不解,甚至批評為「憤世嫉俗者」,網友怒嗆:強推 AI 是炒股價,微軟高層脫離現實,對 AI 的理解有偏差。微軟正積極為 Windows 11 加入原生 AI 功能,但使用者的反應卻不如預期。微軟 AI 業務 CEO 穆斯塔法・蘇萊曼(Mustafa Suleyman)日前公開表示,對於部分用戶對 AI 功能「表現出不感興趣」的態度感到震驚與不解,甚至批評這些人是「憤世嫉俗者」——引來更大的反彈聲浪。 微軟高層連發言都讓人火大:網友嗆聲「你們才脫離現實」 先前微軟 Windows + 裝置部門總裁 Pavan Davuluri 才剛在 X(前推特)上發文推廣 Windows 11 將全面 AI 化,結果慘遭網友灌爆留言,最後還不得不關閉留言功能。雖然他後來發文安撫開發者與使用者的不滿,承諾會改善可靠性與體驗,但明言:「AI 推進是既定方向,無可改變。」 原本風波稍歇,結果蘇萊曼的發言又火上加油。他強調無法理解為何大家對微軟整合 AI 的做法表現出冷感,並稱這些態度負面的人「憤世嫉俗」。雖然這次他沒有關留言功能,卻仍引來上千則酸言酸語。 不少留言都指出,大家其實對 AI 有興趣,只是不信任微軟現在「強推」的方式,認為這不是為了提升使用者體驗,而是為了安撫股東、迎合市場熱潮,甚至有人直言:「這就是炒股價的AI」。 科技媒體《The Register》也發文評論此事,認為微軟高層與一般使用者之間的感知已經出現巨大落差,將批評者視為「反對者」,這種態度顯得高傲且脫離現實。   延伸閱讀:Windows 11 十月更新爆發嚴重 Bug!工作管理員無限「分身」狂吃記憶體 延伸閱讀:微軟解釋為什麼 Windows 11 會安裝「舊版驅動程式」:日期不是重點,系統會挑最適合的版本 延伸閱讀:用了快十年終於統一!Windows 11暗黑模式這次真的「黑到底」  加入T客邦Facebook粉絲團

微軟高層不解:為什麼大家不想要在作業系統中用AI?網友怒回:是不想被強迫推銷

微軟正積極為 Windows 11 加入原生 AI 功能,但使用者的反應卻不如預期。微軟 AI 業務 CEO 穆斯塔法・蘇萊曼(Mustafa Suleyman)日前公開表示,對於部分用戶對 AI 功能「表現出不感興趣」的態度感到震驚與不解,甚至批評這些人是「憤世嫉俗者」——引來更大的反彈聲浪。

微軟高層連發言都讓人火大:網友嗆聲「你們才脫離現實」

先前微軟 Windows + 裝置部門總裁 Pavan Davuluri 才剛在 X(前推特)上發文推廣 Windows 11 將全面 AI 化,結果慘遭網友灌爆留言,最後還不得不關閉留言功能。雖然他後來發文安撫開發者與使用者的不滿,承諾會改善可靠性與體驗,但明言:「AI 推進是既定方向,無可改變。」

原本風波稍歇,結果蘇萊曼的發言又火上加油。他強調無法理解為何大家對微軟整合 AI 的做法表現出冷感,並稱這些態度負面的人「憤世嫉俗」。雖然這次他沒有關留言功能,卻仍引來上千則酸言酸語。

不少留言都指出,大家其實對 AI 有興趣,只是不信任微軟現在「強推」的方式,認為這不是為了提升使用者體驗,而是為了安撫股東、迎合市場熱潮,甚至有人直言:「這就是炒股價的AI」。

科技媒體《The Register》也發文評論此事,認為微軟高層與一般使用者之間的感知已經出現巨大落差,將批評者視為「反對者」,這種態度顯得高傲且脫離現實。

  • 延伸閱讀:Windows 11 十月更新爆發嚴重 Bug!工作管理員無限「分身」狂吃記憶體
  • 延伸閱讀:微軟解釋為什麼 Windows 11 會安裝「舊版驅動程式」:日期不是重點,系統會挑最適合的版本
  • 延伸閱讀:用了快十年終於統一!Windows 11暗黑模式這次真的「黑到底」
Market Opportunity
null Logo
null Price(null)
--
----
USD
null (null) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares launches JitoSOL staking ETP on Euronext, offering European investors regulated access to Solana staking rewards with additional yield opportunities.Read
Share
Coinstats2026/01/30 12:53
Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Robinhood, Sony and trading firms back Series B extension as institutional crypto trading platform expands into traditional asset tokenization
Share
Blockhead2026/01/30 13:30
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40