傑仕登攜手 CAPCOM 於台北國際電玩展帶來多款最新遊戲,重點包含《魔物獵人》系列新作。電玩展期間更將舉辦《Monster Hunter Wilds》狩獵競速賽,邀請獵人們一同參與。遊戲發行與代理商傑仕登宣布,將於 2026 年 1 月 29 日至 2 月 1 日參加在台北南港展覽館舉行的「2026 台北國際電玩展」。本次展會傑仕登與 CAPCOM 聯手,帶來多款備受期待的最新遊戲,包括《Resident Evil Requiem》、《Monster Hunter Stories 3:命運雙龍》、《PRAGMATA》、《鬼武者 Way of the Sword》、《Street Fighter 6》與《流星 ROCKMAN 完美合集》等作品。 與此同時,官方也將在電玩展期間舉辦《Monster Hunter Wilds Taiwan Championship》狩獵競速賽,邀請全台獵人挑戰「最速獵人」的稱號。 多款 CAPCOM 大作現身電玩展 在本屆展會中,CAPCOM 展出的遊戲陣容涵蓋了動作、角色扮演與格鬥等多種類型: 《Resident Evil Requiem》:為《惡靈古堡》系列第九部主線作品。「Requiem」(安魂曲)將會為玩家帶來令人窒息的緊張感、渾身顫抖的恐懼,以及戰勝死亡的爽快感,撼動玩家的精神深處。 《Monster Hunter Stories 3:命運雙龍》:「Monster Hunter」系列 RPG第 3 彈!孿生火龍的誕生,命運於此刻交織。「Monster Hunter Stories」是一個 RPG 遊戲系列, 玩家將會成為與魔物建立羈絆,對其加以培育並與之共存的「魔物騎士」,盡情體驗「Monster Hunter」的世界。 《PRAGMATA》: CAPCOM 全新遊戲《Pragmata》將利用獨特的駭客體驗,帶領玩家展開全新感覺的科幻動作冒險! 主角休和機器人伙伴黛安娜將齊心協力,於冰冷的近未來月球基地展開冒險。 《鬼武者 Way of the Sword》:以血洗血的至高無上劍鬥動作遊戲。這次的舞台為江戶時代初期的「京都」,它因瘴氣而幻化成了不可思議的樣貌。各式各樣充滿詭譎氣息的遊戲關卡。來自異界的奇形敵人「幻魔」以及棲息於此地的人們,共同交織出黑暗的幻想故事。一名手臂戴著「鬼之籠手」的武士奔馳於京都各地,斬殺猖獗的幻魔。 《Street Fighter 6》:以 RE ENGINE 開發,並由系列前所未有的大型模式「World Tour(世界巡遊)」、「Fighting Ground(格鬥之地)」以及「Battle Hub(對戰大堂)」構成,透過三大模式開創格鬥遊戲新局。 《流星 ROCKMAN 完美合集》:以動畫和卡片等多媒體形式而廣受好評的《流星ROCKMAN》推出收藏版。本作收錄了包含不同版本在內的 7 款遊戲,並設有藝廊模式,玩家不僅可以欣賞插畫和當時的 BGM,以及改編的樂曲!戰鬥系統也比原作有所提升,並支援線上對戰。 《Monster Hunter Wilds Taiwan Championship》同步開戰 本次賽事為台灣首次舉辦的《Monster Hunter Wilds》狩獵競速賽,以兩人一組的形式進行,挑戰在最短時間內完成指定任務。預賽將於 1 月 31 日舉行,決賽則在 2 月 1 日登場。參賽者須於 2025 年 12 月 16 日前完成線上報名。 預賽任務為連續討伐「刺花蜘蛛」與「怪鳥」,而決賽則需挑戰高難度魔物「黑蝕龍」。最終預賽排名前六名隊伍將晉級決賽,爭奪冠軍榮耀。參賽者將獲得專屬好禮,包括原創毛巾、遊戲道具序號、限定飾物,以及電玩展入場券等。決賽優勝隊伍的獎品則預計稍後公布。 更多資訊與報名詳情,請參閱官方活動網站:官方網站連結 延伸閱讀:台北電玩展「Indie Game Award 2026」入圍名單揭曉:51 國 515 組團隊角逐,台灣五強作品嶄露頭角 延伸閱讀:PS5 史上最會賺!累積營收突破 1360 億美元,東京電玩展宣布里程碑 延伸閱讀:TGS 2025 台北國際電玩展落幕,未受春節連假影響,參觀人數超越去年更突破官方預估 加入T客邦Facebook粉絲團傑仕登攜手 CAPCOM 於台北國際電玩展帶來多款最新遊戲,重點包含《魔物獵人》系列新作。電玩展期間更將舉辦《Monster Hunter Wilds》狩獵競速賽,邀請獵人們一同參與。遊戲發行與代理商傑仕登宣布,將於 2026 年 1 月 29 日至 2 月 1 日參加在台北南港展覽館舉行的「2026 台北國際電玩展」。本次展會傑仕登與 CAPCOM 聯手,帶來多款備受期待的最新遊戲,包括《Resident Evil Requiem》、《Monster Hunter Stories 3:命運雙龍》、《PRAGMATA》、《鬼武者 Way of the Sword》、《Street Fighter 6》與《流星 ROCKMAN 完美合集》等作品。 與此同時,官方也將在電玩展期間舉辦《Monster Hunter Wilds Taiwan Championship》狩獵競速賽,邀請全台獵人挑戰「最速獵人」的稱號。 多款 CAPCOM 大作現身電玩展 在本屆展會中,CAPCOM 展出的遊戲陣容涵蓋了動作、角色扮演與格鬥等多種類型: 《Resident Evil Requiem》:為《惡靈古堡》系列第九部主線作品。「Requiem」(安魂曲)將會為玩家帶來令人窒息的緊張感、渾身顫抖的恐懼,以及戰勝死亡的爽快感,撼動玩家的精神深處。 《Monster Hunter Stories 3:命運雙龍》:「Monster Hunter」系列 RPG第 3 彈!孿生火龍的誕生,命運於此刻交織。「Monster Hunter Stories」是一個 RPG 遊戲系列, 玩家將會成為與魔物建立羈絆,對其加以培育並與之共存的「魔物騎士」,盡情體驗「Monster Hunter」的世界。 《PRAGMATA》: CAPCOM 全新遊戲《Pragmata》將利用獨特的駭客體驗,帶領玩家展開全新感覺的科幻動作冒險! 主角休和機器人伙伴黛安娜將齊心協力,於冰冷的近未來月球基地展開冒險。 《鬼武者 Way of the Sword》:以血洗血的至高無上劍鬥動作遊戲。這次的舞台為江戶時代初期的「京都」,它因瘴氣而幻化成了不可思議的樣貌。各式各樣充滿詭譎氣息的遊戲關卡。來自異界的奇形敵人「幻魔」以及棲息於此地的人們,共同交織出黑暗的幻想故事。一名手臂戴著「鬼之籠手」的武士奔馳於京都各地,斬殺猖獗的幻魔。 《Street Fighter 6》:以 RE ENGINE 開發,並由系列前所未有的大型模式「World Tour(世界巡遊)」、「Fighting Ground(格鬥之地)」以及「Battle Hub(對戰大堂)」構成,透過三大模式開創格鬥遊戲新局。 《流星 ROCKMAN 完美合集》:以動畫和卡片等多媒體形式而廣受好評的《流星ROCKMAN》推出收藏版。本作收錄了包含不同版本在內的 7 款遊戲,並設有藝廊模式,玩家不僅可以欣賞插畫和當時的 BGM,以及改編的樂曲!戰鬥系統也比原作有所提升,並支援線上對戰。 《Monster Hunter Wilds Taiwan Championship》同步開戰 本次賽事為台灣首次舉辦的《Monster Hunter Wilds》狩獵競速賽,以兩人一組的形式進行,挑戰在最短時間內完成指定任務。預賽將於 1 月 31 日舉行,決賽則在 2 月 1 日登場。參賽者須於 2025 年 12 月 16 日前完成線上報名。 預賽任務為連續討伐「刺花蜘蛛」與「怪鳥」,而決賽則需挑戰高難度魔物「黑蝕龍」。最終預賽排名前六名隊伍將晉級決賽,爭奪冠軍榮耀。參賽者將獲得專屬好禮,包括原創毛巾、遊戲道具序號、限定飾物,以及電玩展入場券等。決賽優勝隊伍的獎品則預計稍後公布。 更多資訊與報名詳情,請參閱官方活動網站:官方網站連結 延伸閱讀:台北電玩展「Indie Game Award 2026」入圍名單揭曉:51 國 515 組團隊角逐,台灣五強作品嶄露頭角 延伸閱讀:PS5 史上最會賺!累積營收突破 1360 億美元,東京電玩展宣布里程碑 延伸閱讀:TGS 2025 台北國際電玩展落幕,未受春節連假影響,參觀人數超越去年更突破官方預估 加入T客邦Facebook粉絲團

傑仕登攜手 CAPCOM 參展 2026 台北電玩展,同步舉辦《Monster Hunter Wilds》全台獵人競速賽

遊戲發行與代理商傑仕登宣布,將於 2026 年 1 月 29 日至 2 月 1 日參加在台北南港展覽館舉行的「2026 台北國際電玩展」。本次展會傑仕登與 CAPCOM 聯手,帶來多款備受期待的最新遊戲,包括《Resident Evil Requiem》、《Monster Hunter Stories 3:命運雙龍》、《PRAGMATA》、《鬼武者 Way of the Sword》、《Street Fighter 6》與《流星 ROCKMAN 完美合集》等作品。

與此同時,官方也將在電玩展期間舉辦《Monster Hunter Wilds Taiwan Championship》狩獵競速賽,邀請全台獵人挑戰「最速獵人」的稱號。

多款 CAPCOM 大作現身電玩展

在本屆展會中,CAPCOM 展出的遊戲陣容涵蓋了動作、角色扮演與格鬥等多種類型:

  • 《Resident Evil Requiem》:為《惡靈古堡》系列第九部主線作品。「Requiem」(安魂曲)將會為玩家帶來令人窒息的緊張感、渾身顫抖的恐懼,以及戰勝死亡的爽快感,撼動玩家的精神深處。

  • 《Monster Hunter Stories 3:命運雙龍》:「Monster Hunter」系列 RPG第 3 彈!孿生火龍的誕生,命運於此刻交織。「Monster Hunter Stories」是一個 RPG 遊戲系列, 玩家將會成為與魔物建立羈絆,對其加以培育並與之共存的「魔物騎士」,盡情體驗「Monster Hunter」的世界。

  • 《PRAGMATA》: CAPCOM 全新遊戲《Pragmata》將利用獨特的駭客體驗,帶領玩家展開全新感覺的科幻動作冒險! 主角休和機器人伙伴黛安娜將齊心協力,於冰冷的近未來月球基地展開冒險。

  • 《鬼武者 Way of the Sword》:以血洗血的至高無上劍鬥動作遊戲。這次的舞台為江戶時代初期的「京都」,它因瘴氣而幻化成了不可思議的樣貌。各式各樣充滿詭譎氣息的遊戲關卡。來自異界的奇形敵人「幻魔」以及棲息於此地的人們,共同交織出黑暗的幻想故事。一名手臂戴著「鬼之籠手」的武士奔馳於京都各地,斬殺猖獗的幻魔。

  • 《Street Fighter 6》:以 RE ENGINE 開發,並由系列前所未有的大型模式「World Tour(世界巡遊)」、「Fighting Ground(格鬥之地)」以及「Battle Hub(對戰大堂)」構成,透過三大模式開創格鬥遊戲新局。

  • 《流星 ROCKMAN 完美合集》:以動畫和卡片等多媒體形式而廣受好評的《流星ROCKMAN》推出收藏版。本作收錄了包含不同版本在內的 7 款遊戲,並設有藝廊模式,玩家不僅可以欣賞插畫和當時的 BGM,以及改編的樂曲!戰鬥系統也比原作有所提升,並支援線上對戰。

《Monster Hunter Wilds Taiwan Championship》同步開戰

本次賽事為台灣首次舉辦的《Monster Hunter Wilds》狩獵競速賽,以兩人一組的形式進行,挑戰在最短時間內完成指定任務。預賽將於 1 月 31 日舉行,決賽則在 2 月 1 日登場。參賽者須於 2025 年 12 月 16 日前完成線上報名。

預賽任務為連續討伐「刺花蜘蛛」與「怪鳥」,而決賽則需挑戰高難度魔物「黑蝕龍」。最終預賽排名前六名隊伍將晉級決賽,爭奪冠軍榮耀。參賽者將獲得專屬好禮,包括原創毛巾、遊戲道具序號、限定飾物,以及電玩展入場券等。決賽優勝隊伍的獎品則預計稍後公布。

更多資訊與報名詳情,請參閱官方活動網站:官方網站連結

  • 延伸閱讀:台北電玩展「Indie Game Award 2026」入圍名單揭曉:51 國 515 組團隊角逐,台灣五強作品嶄露頭角
  • 延伸閱讀:PS5 史上最會賺!累積營收突破 1360 億美元,東京電玩展宣布里程碑
  • 延伸閱讀:TGS 2025 台北國際電玩展落幕,未受春節連假影響,參觀人數超越去年更突破官方預估
Market Opportunity
SQUID MEME Logo
SQUID MEME Price(GAME)
$38.4732
$38.4732$38.4732
+0.13%
USD
SQUID MEME (GAME) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares launches JitoSOL staking ETP on Euronext, offering European investors regulated access to Solana staking rewards with additional yield opportunities.Read
Share
Coinstats2026/01/30 12:53
Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Robinhood, Sony and trading firms back Series B extension as institutional crypto trading platform expands into traditional asset tokenization
Share
Blockhead2026/01/30 13:30
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40