Google 秘密研發 Aluminium OS,目標整合 Android 和 ChromeOS,打造跨平台的作業系統。Google 傳出正秘密開發全新作業系統「Aluminium OS」,不僅將整合 Android 和 ChromeOS,還將觸角擴展到筆電、平板甚至迷你電腦。這個代號為「鋁」的系統未來恐將全面取代 ChromeOS,成為 Google 的下一代跨平台主力。 從「鋁」開始的新整合?Android、ChromeOS 合體中 根據外媒報導,Google 近期在微軟旗下的職涯平台 LinkedIn 上張貼多則招募訊息,內容明確提到正在開發一個名為 Aluminium OS 的新作業系統。 這套系統將「基於 Android 架構」打造,目標是整合目前仍分屬兩套系統的 Android 與 ChromeOS,實現手機、筆電、平板的全平台通用。 事實上,Google 早已多次嘗試讓兩者互通,像是讓 ChromeOS 支援 Android App,甚至推行 Fuchsia 計畫。如今,似乎準備透過一個全新 OS 來從頭改寫生態。 「鋁」這個命名一點也不奇怪 Aluminium 是化學元素「鋁」,不少人乍看可能覺得名字很怪,但其實這正是 Google 一貫的命名風格。例如其瀏覽器 Chromium 就是來自「鉻」,而微軟也曾用「元素週期表」來命名開發代號。 因此,即便最後這套系統真的叫「Aluminium OS」,也不用太驚訝。 規劃三版本、涵蓋筆電到平板 不是只給入門機用 根據 Google 招募資料,Aluminium OS 將有至少三個版本: Entry(入門版) Mass Premium(主流高階) Premium(旗艦級) 預計會搭載在 筆記型電腦、可拆式筆電、平板與迷你電腦 等裝置上。換句話說,這不是一套只跑在 Chromebook 的精簡系統,而是有機會挑戰 Windows 與 macOS 的全能型作業系統。 雖然目前尚不清楚這些版本是否代表訂閱制、差異化功能,或只是硬體對應層級,Google 仍未給出明確說法。 ChromeOS 未來將被取代?Google口徑仍保留 外界認為,Aluminium OS 長期目標是要「完全取代 ChromeOS」。雖然 Google 對此消息並未正式承認,但根據內部規劃,這套新系統將與 ChromeOS 共存一段過渡期,之後才會全面接替。 ChromeOS 自推出以來一直沒能真正打進主流桌面市場,即便教育市場成績尚可,但始終難與 Windows 與 macOS 匹敵。如今 Google 決定重新出發,可能代表他們認為 ChromeOS 的定位與成長空間已到極限。 Fuchsia 計畫仍是「備胎」? Google 其實還有另一套作業系統 Fuchsia,但發展進度低調許多。若 Aluminium OS 成功推出並整合 Android + ChromeOS 生態,Fuchsia 很可能將退居技術實驗性平台。 而這一切,也暗示了 Google 再度想做出「自己的電腦作業系統」,不再只是靠手機稱霸。   延伸閱讀:Google 高層澄清:ChromeOS 將改以 Android 為底層重構,但不會與 Android 合併 延伸閱讀:Google 確認將 ChromeOS 整合進 Android,未來只剩一套作業系統? 延伸閱讀:想讓Android手機可一鍵運行 ChromeOS 系統的Ferrochrome計畫,據說已經被Google放棄  加入T客邦Facebook粉絲團Google 秘密研發 Aluminium OS,目標整合 Android 和 ChromeOS,打造跨平台的作業系統。Google 傳出正秘密開發全新作業系統「Aluminium OS」,不僅將整合 Android 和 ChromeOS,還將觸角擴展到筆電、平板甚至迷你電腦。這個代號為「鋁」的系統未來恐將全面取代 ChromeOS,成為 Google 的下一代跨平台主力。 從「鋁」開始的新整合?Android、ChromeOS 合體中 根據外媒報導,Google 近期在微軟旗下的職涯平台 LinkedIn 上張貼多則招募訊息,內容明確提到正在開發一個名為 Aluminium OS 的新作業系統。 這套系統將「基於 Android 架構」打造,目標是整合目前仍分屬兩套系統的 Android 與 ChromeOS,實現手機、筆電、平板的全平台通用。 事實上,Google 早已多次嘗試讓兩者互通,像是讓 ChromeOS 支援 Android App,甚至推行 Fuchsia 計畫。如今,似乎準備透過一個全新 OS 來從頭改寫生態。 「鋁」這個命名一點也不奇怪 Aluminium 是化學元素「鋁」,不少人乍看可能覺得名字很怪,但其實這正是 Google 一貫的命名風格。例如其瀏覽器 Chromium 就是來自「鉻」,而微軟也曾用「元素週期表」來命名開發代號。 因此,即便最後這套系統真的叫「Aluminium OS」,也不用太驚訝。 規劃三版本、涵蓋筆電到平板 不是只給入門機用 根據 Google 招募資料,Aluminium OS 將有至少三個版本: Entry(入門版) Mass Premium(主流高階) Premium(旗艦級) 預計會搭載在 筆記型電腦、可拆式筆電、平板與迷你電腦 等裝置上。換句話說,這不是一套只跑在 Chromebook 的精簡系統,而是有機會挑戰 Windows 與 macOS 的全能型作業系統。 雖然目前尚不清楚這些版本是否代表訂閱制、差異化功能,或只是硬體對應層級,Google 仍未給出明確說法。 ChromeOS 未來將被取代?Google口徑仍保留 外界認為,Aluminium OS 長期目標是要「完全取代 ChromeOS」。雖然 Google 對此消息並未正式承認,但根據內部規劃,這套新系統將與 ChromeOS 共存一段過渡期,之後才會全面接替。 ChromeOS 自推出以來一直沒能真正打進主流桌面市場,即便教育市場成績尚可,但始終難與 Windows 與 macOS 匹敵。如今 Google 決定重新出發,可能代表他們認為 ChromeOS 的定位與成長空間已到極限。 Fuchsia 計畫仍是「備胎」? Google 其實還有另一套作業系統 Fuchsia,但發展進度低調許多。若 Aluminium OS 成功推出並整合 Android + ChromeOS 生態,Fuchsia 很可能將退居技術實驗性平台。 而這一切,也暗示了 Google 再度想做出「自己的電腦作業系統」,不再只是靠手機稱霸。   延伸閱讀:Google 高層澄清:ChromeOS 將改以 Android 為底層重構,但不會與 Android 合併 延伸閱讀:Google 確認將 ChromeOS 整合進 Android,未來只剩一套作業系統? 延伸閱讀:想讓Android手機可一鍵運行 ChromeOS 系統的Ferrochrome計畫,據說已經被Google放棄  加入T客邦Facebook粉絲團

Google又傳全新 Aluminium OS 作業系統,將整合 Android 與 ChromeOS

Google 傳出正秘密開發全新作業系統「Aluminium OS」,不僅將整合 Android 和 ChromeOS,還將觸角擴展到筆電、平板甚至迷你電腦。這個代號為「鋁」的系統未來恐將全面取代 ChromeOS,成為 Google 的下一代跨平台主力。

從「鋁」開始的新整合?Android、ChromeOS 合體中

根據外媒報導,Google 近期在微軟旗下的職涯平台 LinkedIn 上張貼多則招募訊息,內容明確提到正在開發一個名為 Aluminium OS 的新作業系統。

這套系統將「基於 Android 架構」打造,目標是整合目前仍分屬兩套系統的 Android 與 ChromeOS,實現手機、筆電、平板的全平台通用。

事實上,Google 早已多次嘗試讓兩者互通,像是讓 ChromeOS 支援 Android App,甚至推行 Fuchsia 計畫。如今,似乎準備透過一個全新 OS 來從頭改寫生態。

「鋁」這個命名一點也不奇怪

Aluminium 是化學元素「鋁」,不少人乍看可能覺得名字很怪,但其實這正是 Google 一貫的命名風格。例如其瀏覽器 Chromium 就是來自「鉻」,而微軟也曾用「元素週期表」來命名開發代號。

因此,即便最後這套系統真的叫「Aluminium OS」,也不用太驚訝。

規劃三版本、涵蓋筆電到平板 不是只給入門機用

根據 Google 招募資料,Aluminium OS 將有至少三個版本:

  • Entry(入門版)

  • Mass Premium(主流高階)

  • Premium(旗艦級)

預計會搭載在 筆記型電腦、可拆式筆電、平板與迷你電腦 等裝置上。換句話說,這不是一套只跑在 Chromebook 的精簡系統,而是有機會挑戰 Windows 與 macOS 的全能型作業系統。

雖然目前尚不清楚這些版本是否代表訂閱制、差異化功能,或只是硬體對應層級,Google 仍未給出明確說法。

ChromeOS 未來將被取代?Google口徑仍保留

外界認為,Aluminium OS 長期目標是要「完全取代 ChromeOS」。雖然 Google 對此消息並未正式承認,但根據內部規劃,這套新系統將與 ChromeOS 共存一段過渡期,之後才會全面接替。

ChromeOS 自推出以來一直沒能真正打進主流桌面市場,即便教育市場成績尚可,但始終難與 Windows 與 macOS 匹敵。如今 Google 決定重新出發,可能代表他們認為 ChromeOS 的定位與成長空間已到極限。

Fuchsia 計畫仍是「備胎」?

Google 其實還有另一套作業系統 Fuchsia,但發展進度低調許多。若 Aluminium OS 成功推出並整合 Android + ChromeOS 生態,Fuchsia 很可能將退居技術實驗性平台。

而這一切,也暗示了 Google 再度想做出「自己的電腦作業系統」,不再只是靠手機稱霸。

  • 延伸閱讀:Google 高層澄清:ChromeOS 將改以 Android 為底層重構,但不會與 Android 合併
  • 延伸閱讀:Google 確認將 ChromeOS 整合進 Android,未來只剩一套作業系統?
  • 延伸閱讀:想讓Android手機可一鍵運行 ChromeOS 系統的Ferrochrome計畫,據說已經被Google放棄
Market Opportunity
RWAX Logo
RWAX Price(APP)
$0.0001902
$0.0001902$0.0001902
+8.87%
USD
RWAX (APP) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares launches JitoSOL staking ETP on Euronext, offering European investors regulated access to Solana staking rewards with additional yield opportunities.Read
Share
Coinstats2026/01/30 12:53
Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Robinhood, Sony and trading firms back Series B extension as institutional crypto trading platform expands into traditional asset tokenization
Share
Blockhead2026/01/30 13:30
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40