華特迪士尼幻想工程推出新一代機器人角色,出自《冰雪奇緣》(Frozen)的雪人「雪寶」(Olaf)。這款雪寶機器人將於香港迪士尼樂園度假區的「冰雪奇緣世界」進行限定時間的特別見面會。華特迪士尼幻想工程(Walt Disney Imagineering)於巴黎迪士尼樂園公開展示其新一代機器人角色,出自《冰雪奇緣》(Frozen)的雪人「雪寶」(Olaf)。這款雪寶機器人將於香港迪士尼樂園度假區的「冰雪奇緣世界」進行限定時間的特別見面會,未來也將在巴黎迪士尼樂園亮相。 技術核心:動畫細節的實體化呈現 幻想工程團隊指出,新機器人雪寶的設計目標是精確反映觀眾在電影中看到的雪寶形象,包括其動作、外觀細節及生動感。在動作與神態方面,團隊與華特迪士尼動畫工作室的原創動畫師密切合作,以確保機器人雪寶的每一個姿態和動作都符合角色的個性與情感表達。 雪寶的表面材質則是加入了虹彩纖維,使其能夠捕捉光線,呈現出類似新鮮雪花的微光閃爍效果。另外,雪寶也被設計成高度逼真和富有表現力的角色,擁有可活動的嘴巴、眼睛,以及可拆卸的紅蘿蔔鼻子和手臂,並且能夠與賓客進行語音對話。 深度強化學習助力實現流暢動作 迪士尼強調,技術創新始終以故事為核心,目標是賦予幻想工程師將角色帶入生命的能力。 相較於其他如《星際大戰》BDX 機器人等具備固定外殼的自由漫步機器人,雪寶作為一個動畫角色,其非實體的「雪質」動作對技術構成了更大的挑戰。 AI 技術應用:為了讓雪寶的動作盡可能地流暢和真實,團隊運用了強化學習(Reinforcement Learning)這一人工智慧分支技術。 學習效率:幻想工程說明,透過深度強化學習,雪寶能在極短時間內習得複雜的動作技能,以達到藝術家們所追求的創意效果,同時突破了硬體層面的限制。 幻想工程表示,此次雪寶機器人的成功開發,連同 BDX 機器人與自平衡的 H.E.R.B.I.E.,代表了迪士尼在賦予角色生命方面的性能和創新正持續進步。公司將加速新角色的創造與推出,致力於為全球樂園提供更具情感和表現力的體驗。 雪寶將於香港與巴黎迪士尼登場 機器人雪寶將在不久後與全球樂園賓客見面: 香港迪士尼樂園度假區: 在「冰雪奇緣世界」(World of Frozen)舉行限定時間的特別見面會。 巴黎迪士尼樂園: 在即將於迪士尼探險世界(Disney Adventure World)開放的「冰雪奇緣世界」主題區中,參與阿倫戴爾灣表演(Arendelle Bay Show)。   延伸閱讀:《冰雪奇緣》系列短片 Disney+ 上線!韓流天后太妍驚喜現身、全球首個「冰雪奇緣園區」幕後花絮大公開 加入T客邦Facebook粉絲團華特迪士尼幻想工程推出新一代機器人角色,出自《冰雪奇緣》(Frozen)的雪人「雪寶」(Olaf)。這款雪寶機器人將於香港迪士尼樂園度假區的「冰雪奇緣世界」進行限定時間的特別見面會。華特迪士尼幻想工程(Walt Disney Imagineering)於巴黎迪士尼樂園公開展示其新一代機器人角色,出自《冰雪奇緣》(Frozen)的雪人「雪寶」(Olaf)。這款雪寶機器人將於香港迪士尼樂園度假區的「冰雪奇緣世界」進行限定時間的特別見面會,未來也將在巴黎迪士尼樂園亮相。 技術核心:動畫細節的實體化呈現 幻想工程團隊指出,新機器人雪寶的設計目標是精確反映觀眾在電影中看到的雪寶形象,包括其動作、外觀細節及生動感。在動作與神態方面,團隊與華特迪士尼動畫工作室的原創動畫師密切合作,以確保機器人雪寶的每一個姿態和動作都符合角色的個性與情感表達。 雪寶的表面材質則是加入了虹彩纖維,使其能夠捕捉光線,呈現出類似新鮮雪花的微光閃爍效果。另外,雪寶也被設計成高度逼真和富有表現力的角色,擁有可活動的嘴巴、眼睛,以及可拆卸的紅蘿蔔鼻子和手臂,並且能夠與賓客進行語音對話。 深度強化學習助力實現流暢動作 迪士尼強調,技術創新始終以故事為核心,目標是賦予幻想工程師將角色帶入生命的能力。 相較於其他如《星際大戰》BDX 機器人等具備固定外殼的自由漫步機器人,雪寶作為一個動畫角色,其非實體的「雪質」動作對技術構成了更大的挑戰。 AI 技術應用:為了讓雪寶的動作盡可能地流暢和真實,團隊運用了強化學習(Reinforcement Learning)這一人工智慧分支技術。 學習效率:幻想工程說明,透過深度強化學習,雪寶能在極短時間內習得複雜的動作技能,以達到藝術家們所追求的創意效果,同時突破了硬體層面的限制。 幻想工程表示,此次雪寶機器人的成功開發,連同 BDX 機器人與自平衡的 H.E.R.B.I.E.,代表了迪士尼在賦予角色生命方面的性能和創新正持續進步。公司將加速新角色的創造與推出,致力於為全球樂園提供更具情感和表現力的體驗。 雪寶將於香港與巴黎迪士尼登場 機器人雪寶將在不久後與全球樂園賓客見面: 香港迪士尼樂園度假區: 在「冰雪奇緣世界」(World of Frozen)舉行限定時間的特別見面會。 巴黎迪士尼樂園: 在即將於迪士尼探險世界(Disney Adventure World)開放的「冰雪奇緣世界」主題區中,參與阿倫戴爾灣表演(Arendelle Bay Show)。   延伸閱讀:《冰雪奇緣》系列短片 Disney+ 上線!韓流天后太妍驚喜現身、全球首個「冰雪奇緣園區」幕後花絮大公開 加入T客邦Facebook粉絲團

迪士尼魔法成真!《冰雪奇緣》雪寶 AI 機器人登場,香港迪士尼就能看到

華特迪士尼幻想工程(Walt Disney Imagineering)於巴黎迪士尼樂園公開展示其新一代機器人角色,出自《冰雪奇緣》(Frozen)的雪人「雪寶」(Olaf)。這款雪寶機器人將於香港迪士尼樂園度假區的「冰雪奇緣世界」進行限定時間的特別見面會,未來也將在巴黎迪士尼樂園亮相。

技術核心:動畫細節的實體化呈現

幻想工程團隊指出,新機器人雪寶的設計目標是精確反映觀眾在電影中看到的雪寶形象,包括其動作、外觀細節及生動感。在動作與神態方面,團隊與華特迪士尼動畫工作室的原創動畫師密切合作,以確保機器人雪寶的每一個姿態和動作都符合角色的個性與情感表達。

雪寶的表面材質則是加入了虹彩纖維,使其能夠捕捉光線,呈現出類似新鮮雪花的微光閃爍效果。另外,雪寶也被設計成高度逼真和富有表現力的角色,擁有可活動的嘴巴、眼睛,以及可拆卸的紅蘿蔔鼻子和手臂,並且能夠與賓客進行語音對話。

深度強化學習助力實現流暢動作

迪士尼強調,技術創新始終以故事為核心,目標是賦予幻想工程師將角色帶入生命的能力。

相較於其他如《星際大戰》BDX 機器人等具備固定外殼的自由漫步機器人,雪寶作為一個動畫角色,其非實體的「雪質」動作對技術構成了更大的挑戰。

  • AI 技術應用:為了讓雪寶的動作盡可能地流暢和真實,團隊運用了強化學習(Reinforcement Learning)這一人工智慧分支技術。
  • 學習效率:幻想工程說明,透過深度強化學習,雪寶能在極短時間內習得複雜的動作技能,以達到藝術家們所追求的創意效果,同時突破了硬體層面的限制。

幻想工程表示,此次雪寶機器人的成功開發,連同 BDX 機器人與自平衡的 H.E.R.B.I.E.,代表了迪士尼在賦予角色生命方面的性能和創新正持續進步。公司將加速新角色的創造與推出,致力於為全球樂園提供更具情感和表現力的體驗。

雪寶將於香港與巴黎迪士尼登場

機器人雪寶將在不久後與全球樂園賓客見面:

  • 香港迪士尼樂園度假區: 在「冰雪奇緣世界」(World of Frozen)舉行限定時間的特別見面會。
  • 巴黎迪士尼樂園: 在即將於迪士尼探險世界(Disney Adventure World)開放的「冰雪奇緣世界」主題區中,參與阿倫戴爾灣表演(Arendelle Bay Show)。
  • 延伸閱讀:《冰雪奇緣》系列短片 Disney+ 上線!韓流天后太妍驚喜現身、全球首個「冰雪奇緣園區」幕後花絮大公開
Market Opportunity
null Logo
null Price(null)
--
----
USD
null (null) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares launches JitoSOL staking ETP on Euronext, offering European investors regulated access to Solana staking rewards with additional yield opportunities.Read
Share
Coinstats2026/01/30 12:53
Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Robinhood, Sony and trading firms back Series B extension as institutional crypto trading platform expands into traditional asset tokenization
Share
Blockhead2026/01/30 13:30
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40