Liquidity providers in concentrated AMMs face a trade-off between fee income and impermanent loss, with optimal range selection depending on volatility, tradingLiquidity providers in concentrated AMMs face a trade-off between fee income and impermanent loss, with optimal range selection depending on volatility, trading

Liquidity Providers Face a Trade-Off Between Fees and Loss in Concentrated AMMs

Abstract

1. Introduction

2. Constant function markets and concentrated liquidity

  • Constant function markets
  • Concentrated liquidity market

3. The wealth of liquidity providers in CL pools

  • Position value
  • Fee income
  • Fee income: pool fee rate
  • Fee income: spread and concentration risk
  • Fee income: drift and asymmetry
  • Rebalancing costs and gas fees

4. Optimal liquidity provision in CL pools

  • The problem
  • The optimal strategy
  • Discussion: profitability, PL, and concentration risk
  • Discussion: drift and position skew

5. Performance of strategy

  • Methodology
  • Benchmark
  • Performance results

6. Discussion: modelling assumptions

  • Discussion: related work

7. Conclusions And References

\

Conclusions

We studied the dynamics of the wealth of an LP in a CPM with CL who implements a selffinancing strategy that dynamically adjusts the range of liquidity. The wealth of the LP consists of the position value and fee revenue. We showed that the position value depreciates due to PL and the LP widens her liquidity range to minimise her exposure to PL. On the other hand, the fee revenue is higher for narrow ranges, but narrow ranges also increase concentration risk. We derived the optimal strategy to provide liquidity in a CPM with CL when the LP maximises expected utility of terminal wealth. This strategy is found in closed-form for log-utility of wealth, and it shows that liquidity provision is subject to a profitability condition. In particular, the potential gains from fees, net of gas fees and concentration costs, must exceed PL. Our model shows that the LP strategically adjusts the spread of her position around the reference exchange rate; the spread depends on various market features including tthe volatility of the rate, the liquidity taking activity in the pool, and the drift of the rate.

\

References

Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D., 2021. Uniswap v3 core. Technical Report.

Angeris, G., Chitra, T., Evans, A., 2022. When does the tail wag the dog? curvature and market making .

Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T., 2021. An analysis of uniswap markets.

Avellaneda, M., Stoikov, S., 2008. High frequency trading in a limit order book. Quantitative Finance 8, 217–224. doi:10.1080/14697680701381228.

Barger, W., Lorig, M., 2019. Optimal liquidation under stochastic price impact. International Journal of Theoretical and Applied Finance 22, 1850059.

Bergault, P., Bertucci, L., Bouba, D., Gueant, O., Guilbert, J., 2024. Price-aware automated market makers: Models ´ beyond brownian prices and static liquidity. arXiv preprint arXiv:2405.03496 .

Bergault, P., Drissi, F., Gueant, O., 2022. Multi-asset optimal execution and statistical arbitrage strategies un- ´ der Ornstein–Uhlenbeck dynamics. SIAM Journal on Financial Mathematics 13, 353–390. doi:10.1137/ 21M1407756.

Bergault, P., Evangelista, D., Gueant, O., Vieira, D., 2021. Closed-form approximations in multi-asset market making. ´ Applied Mathematical Finance 28, 101–142. doi:10.1080/1350486X.2021.1949359.

Biais, B., 1993. Price formation and equilibrium liquidity in fragmented and centralized markets. The Journal of Finance 48, 157–185.

Biais, B., Capponi, A., Cong, L.W., Gaur, V., Giesecke, K., 2023. Advances in blockchain and crypto economics. Management Science 69, 6417–6426.

Capponi, A., Jia, R., 2021. The adoption of blockchain-based decentralized exchanges. arXiv preprint arXiv:2103.08842 .

Capponi, A., Jia, R., Yu, S., 2023a. Price discovery on decentralized exchanges. Available at SSRN 4236993 .

Capponi, A., Jia, R., Zhu, B., 2023b. The paradox of just-in-time liquidity in decentralized exchanges: More providers can sometimes mean less liquidity. Available at SSRN .

Cartea, A., Donnelly, R., Jaimungal, S., 2017. Algorithmic trading with model uncertainty. SIAM Journal on Financial ´ Mathematics 8, 635–671. Cartea, A., Donnelly, R., Jaimungal, S., 2018. Enhancing trading strategies with order book signals. Applied Mathe- ´ matical Finance 25, 1–35. Cartea, A., Drissi, F., Monga, M., 2022. Decentralised finance and automated market making: Execution and specu- ´ lation. Available at SSRN 4144743 .

Cartea, A., Drissi, F., Monga, M., 2023a. Execution and statistical arbitrage with signals in multiple automated market ´ makers, in: 2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW), IEEE. pp. 37–42.

Cartea, A., Drissi, F., Monga, M., 2023b. Predictable losses of liquidity provision in constant function markets and ´ concentrated liquidity markets. Applied Mathematical Finance 30, 69–93.

Cartea, A., Drissi, F., S ´ anchez-Betancourt, L., Siska, D., Szpruch, L., 2023c. Automated market makers designs ´ beyond constant functions. Available at SSRN 4459177 .

Cartea, A., Jaimungal, S., Penalva, J., 2015. Algorithmic and high-frequency trading. Cambridge University Press.

Cartea, A., Jaimungal, S., Ricci, J., 2014. Buy low, sell high: A high frequency trading perspective. SIAM Journal on ´ Financial Mathematics 5, 415–444.

Cartea, A., Jaimungal, S., S ´ anchez-Betancourt, L., 2021. Latency and liquidity risk. International Journal of Theoret- ´ ical and Applied Finance 24, 2150035.

Cartea, A., S ´ anchez-Betancourt, L., 2021. The shadow price of latency: Improving intraday fill ratios in foreign ´ exchange markets. SIAM Journal on Financial Mathematics 12, 254–294.

Cartea, A., Wang, Y., 2020. Market making with alpha signals. International Journal of Theoretical and Applied ´ Finance 23, 2050016.

Chiu, J., Koeppl, T.V., 2019. Blockchain-based settlement for asset trading. The Review of Financial Studies 32, 1716–1753.

Donnelly, R., 2022. Optimal execution: A review. Applied Mathematical Finance 29, 181–212.

Donnelly, R., Lorig, M., 2020. Optimal trading with differing trade signals. Applied Mathematical Finance 27, 317–344. Drissi, F., 2022. Solvability of differential riccati equations and applications to algorithmic trading with signals. Applied Mathematical Finance 29, 457–493. doi:10.1080/1350486X.2023.2241130.

Drissi, F., 2023. Models of market liquidity: Applications to traditional markets and automated market makers. Available at SSRN 4424010 . Engel, D., Herlihy, M., 2021a. Composing networks of automated market makers, in: Proceedings of the 3rd ACM Conference on Advances in Financial Technologies, pp. 15–28.

Engel, D., Herlihy, M., 2021b. Presentation and publication: Loss and slippage in networks of automated market makers. arXiv preprint arXiv:2110.09872 .

Fan, Z., Marmolejo-Cossio, F., Moroz, D.J., Neuder, M., Rao, R., Parkes, D.C., 2021. Strategic liquidity provision in uniswap v3. arXiv preprint arXiv:2106.12033 .

Fan, Z., Marmolejo-Coss´ıo, F.J., Altschuler, B., Sun, H., Wang, X., Parkes, D., 2022. Differential liquidity provision in uniswap v3 and implications for contract design, in: Proceedings of the Third ACM International Conference on AI in Finance, pp. 9–17.

Forde, M., Sanchez-Betancourt, L., Smith, B., 2022. Optimal trade execution for Gaussian signals with power-law ´ resilience. Quantitative Finance 22, 585–596.

Fukasawa, M., Maire, B., Wunsch, M., 2023. Model-free hedging of impermanent loss in geometric mean market makers. arXiv preprint arXiv:2303.11118 .

Goyal, M., Ramseyer, G., Goel, A., Mazieres, D., 2023. Finding the right curve: Optimal design of constant function ` market makers, in: Proceedings of the 24th ACM Conference on Economics and Computation, pp. 783–812.

Gueant, O., 2016. The Financial Mathematics of Market Liquidity: From optimal execution to market making. ´ volume 33. CRC Press.

Gueant, O., 2017. Optimal market making. Applied Mathematical Finance 24, 112–154. doi: ´ 10.1080/1350486X. 2017.1342552.

He, X.D., Yang, C., Zhou, Y., 2024. Liquidity pool design on automated market makers. arXiv preprint arXiv:2404.13291 .

Heimbach, L., Schertenleib, E., Wattenhofer, R., 2022. Risks and returns of Uniswap v3 liquidity providers.

Ho, T.S., Stoll, H.R., 1983. The dynamics of dealer markets under competition. The Journal of Finance 38, 1053– 1074.

Lı, T., Naik, S., Papanicolaou, A., Schonleber, L., 2023. Yield farming for liquidity provision . ¨

Lipton, A., Treccani, A., 2021. Blockchain and Distributed Ledgers: Mathematics, Technology, and Economics. World Scientific.

Lommers, K., Kim, J., Skidan, B., 2023. The case for stochastically dynamic AMMs. Preprint.

Milionis, J., Moallemi, C.C., Roughgarden, T., 2023. Automated market making and arbitrage profits in the presence of fees. arXiv preprint arXiv:2305.14604 .

Milionis, J., Moallemi, C.C., Roughgarden, T., Zhang, A.L., 2022. Automated market making and loss-versusrebalancing. arXiv preprint arXiv:2208.06046 .

:::info Authors:

  1. Alvaro Cartea ´
  2. Fayc¸al Drissia
  3. Marcello Monga

:::

:::info This paper is available on arxiv under CC0 1.0 Universal license.

:::

\

Market Opportunity
Polytrade Logo
Polytrade Price(TRADE)
$0.05145
$0.05145$0.05145
-4.65%
USD
Polytrade (TRADE) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

CME Group to launch options on XRP and SOL futures

CME Group to launch options on XRP and SOL futures

The post CME Group to launch options on XRP and SOL futures appeared on BitcoinEthereumNews.com. CME Group will offer options based on the derivative markets on Solana (SOL) and XRP. The new markets will open on October 13, after regulatory approval.  CME Group will expand its crypto products with options on the futures markets of Solana (SOL) and XRP. The futures market will start on October 13, after regulatory review and approval.  The options will allow the trading of MicroSol, XRP, and MicroXRP futures, with expiry dates available every business day, monthly, and quarterly. The new products will be added to the existing BTC and ETH options markets. ‘The launch of these options contracts builds on the significant growth and increasing liquidity we have seen across our suite of Solana and XRP futures,’ said Giovanni Vicioso, CME Group Global Head of Cryptocurrency Products. The options contracts will have two main sizes, tracking the futures contracts. The new market will be suitable for sophisticated institutional traders, as well as active individual traders. The addition of options markets singles out XRP and SOL as liquid enough to offer the potential to bet on a market direction.  The options on futures arrive a few months after the launch of SOL futures. Both SOL and XRP had peak volumes in August, though XRP activity has slowed down in September. XRP and SOL options to tap both institutions and active traders Crypto options are one of the indicators of market attitudes, with XRP and SOL receiving a new way to gauge sentiment. The contracts will be supported by the Cumberland team.  ‘As one of the biggest liquidity providers in the ecosystem, the Cumberland team is excited to support CME Group’s continued expansion of crypto offerings,’ said Roman Makarov, Head of Cumberland Options Trading at DRW. ‘The launch of options on Solana and XRP futures is the latest example of the…
Share
BitcoinEthereumNews2025/09/18 00:56
The Rise of the Heli-Trek: How Fly-Out Adventures Are Redefining Everest Travel

The Rise of the Heli-Trek: How Fly-Out Adventures Are Redefining Everest Travel

Planning to embark on a Gokyo Ri Trek, Mera Peak, or Island Peak? Keep reading to know how the “Fly-Out” model is evolving Khumbu travel.  For a very long time,
Share
Techbullion2025/12/25 12:26
UK crypto holders brace for FCA’s expanded regulatory reach

UK crypto holders brace for FCA’s expanded regulatory reach

The post UK crypto holders brace for FCA’s expanded regulatory reach appeared on BitcoinEthereumNews.com. British crypto holders may soon face a very different landscape as the Financial Conduct Authority (FCA) moves to expand its regulatory reach in the industry. A new consultation paper outlines how the watchdog intends to apply its rulebook to crypto firms, shaping everything from asset safeguarding to trading platform operation. According to the financial regulator, these proposals would translate into clearer protections for retail investors and stricter oversight of crypto firms. UK FCA plans Until now, UK crypto users mostly encountered the FCA through rules on promotions and anti-money laundering checks. The consultation paper goes much further. It proposes direct oversight of stablecoin issuers, custodians, and crypto-asset trading platforms (CATPs). For investors, that means the wallets, exchanges, and coins they rely on could soon be subject to the same governance and resilience standards as traditional financial institutions. The regulator has also clarified that firms need official authorization before serving customers. This condition should, in theory, reduce the risk of sudden platform failures or unclear accountability. David Geale, the FCA’s executive director of payments and digital finance, said the proposals are designed to strike a balance between innovation and protection. He explained: “We want to develop a sustainable and competitive crypto sector – balancing innovation, market integrity and trust.” Geale noted that while the rules will not eliminate investment risks, they will create consistent standards, helping consumers understand what to expect from registered firms. Why does this matter for crypto holders? The UK regulatory framework shift would provide safer custody of assets, better disclosure of risks, and clearer recourse if something goes wrong. However, the regulator was also frank in its submission, arguing that no rulebook can eliminate the volatility or inherent risks of holding digital assets. Instead, the focus is on ensuring that when consumers choose to invest, they do…
Share
BitcoinEthereumNews2025/09/17 23:52